1,387 research outputs found
A Generic Framework for Tracking Using Particle Filter With Dynamic Shape Prior
©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TIP.2007.894244Tracking deforming objects involves estimating the global motion of the object and its local deformations as functions of time. Tracking algorithms using Kalman filters or particle filters (PFs) have been proposed for tracking such objects, but these have limitations due to the lack of dynamic shape information. In this paper, we propose a novel method based on employing a locally linear embedding in order to incorporate dynamic shape information into the particle filtering framework for tracking highly deformable objects in the presence of noise and clutter. The PF also models image statistics such as mean and variance of the given data which can be useful in obtaining proper separation of object and backgroun
Statistical Shape Analysis using Kernel PCA
©2006 SPIE--The International Society for Optical Engineering. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
The electronic version of this article is the complete one and can be found online at: http://dx.doi.org/10.1117/12.641417DOI:10.1117/12.641417Presented at Image Processing
Algorithms and Systems, Neural Networks, and Machine Learning, 16-18 January 2006, San Jose, California, USA.Mercer kernels are used for a wide range of image and signal processing tasks like de-noising, clustering, discriminant analysis etc. These algorithms construct their solutions in terms of the expansions in a high-dimensional feature space F. However, many applications like kernel PCA (principal component analysis) can be used more effectively if a pre-image of the projection in the feature space is available. In this paper, we propose a novel method to reconstruct a unique approximate pre-image of a feature vector and apply it for statistical shape analysis. We provide some experimental results to demonstrate the advantages of kernel PCA over linear PCA for shape learning, which include, but are not limited to, ability to learn and distinguish multiple geometries of shapes and robustness to occlusions
A Framework for Image Segmentation Using Shape Models and Kernel Space Shape Priors
©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TPAMI.2007.70774Segmentation involves separating an object from the background in a given image. The use of image information alone often leads to poor segmentation results due to the presence of noise, clutter or occlusion. The introduction of shape priors in the geometric active contour (GAC) framework has proved to be an effective way to ameliorate some of these problems. In this work, we propose a novel segmentation method combining image information with prior shape knowledge, using level-sets. Following the work of Leventon et al., we propose to revisit the use of PCA to introduce prior knowledge about shapes in a more robust manner. We utilize kernel PCA (KPCA) and show that this method outperforms linear PCA by allowing only those shapes that are close enough to the training data. In our segmentation framework, shape knowledge and image information are encoded into two energy functionals entirely described in terms of shapes. This consistent description permits to fully take advantage of the Kernel PCA methodology and leads to promising segmentation results. In particular, our shape-driven segmentation technique allows for the simultaneous encoding of multiple types of shapes, and offers a convincing level of robustness with respect to noise, occlusions, or smearing
A Study of Quasar Radio Emission from the VLA FIRST Survey
Using the most recent (1998) version of the VLA FIRST survey radio catalog,
we have searched for radio emission from 1704 quasars taken from the most
recent (1993) version of the Hewitt and Burbidge quasar catalog. These quasars
lie in the ~5000 square degrees of sky already covered by the VLA FIRST survey.
Our work has resulted in positive detection of radio emission from 389 quasars
of which 69 quasars have been detected for the first time at radio wavelengths.
We find no evidence of correlation between optical and radio luminosities for
optically selected quasars. We find indications of a bimodal distribution of
radio luminosity, even at a low flux limit of 1 mJy. We show that radio
luminosity is a good discriminant between radio loud and radio quiet quasar
populations, and that it may be inappropriate to make such a division on the
basis of the radio to optical luminosity ratio. We discuss the dependence of
the radio loud fraction on optical luminosity and redshift.Comment: 33 pages LaTeX, 10 figures, 2 tables. Accepted in the Astronomical
Journa
ElfStore: A Resilient Data Storage Service for Federated Edge and Fog Resources
Edge and fog computing have grown popular as IoT deployments become
wide-spread. While application composition and scheduling on such resources are
being explored, there exists a gap in a distributed data storage service on the
edge and fog layer, instead depending solely on the cloud for data persistence.
Such a service should reliably store and manage data on fog and edge devices,
even in the presence of failures, and offer transparent discovery and access to
data for use by edge computing applications. Here, we present Elfstore, a
first-of-its-kind edge-local federated store for streams of data blocks. It
uses reliable fog devices as a super-peer overlay to monitor the edge
resources, offers federated metadata indexing using Bloom filters, locates data
within 2-hops, and maintains approximate global statistics about the
reliability and storage capacity of edges. Edges host the actual data blocks,
and we use a unique differential replication scheme to select edges on which to
replicate blocks, to guarantee a minimum reliability and to balance storage
utilization. Our experiments on two IoT virtual deployments with 20 and 272
devices show that ElfStore has low overheads, is bound only by the network
bandwidth, has scalable performance, and offers tunable resilience.Comment: 24 pages, 14 figures, To appear in IEEE International Conference on
Web Services (ICWS), Milan, Italy, 201
- …