252 research outputs found

    A New Bound on Excess Frequency Noise in Second Harmonic Generation in PPKTP at the 10^-19 Level

    Get PDF
    We report a bound on the relative frequency fluctuations in nonlinear second harmonic generation. A 1064nm Nd:YAG laser is used to read out the phase of a Mach-Zehnder interferometer while PPKTP, a nonlinear crystal, is placed in each arm to generate second harmonic light. By comparing the arm length difference of the Mach Zehnder as read out by the fundamental 1064 nm light, and its second harmonic at 532 nm, we can bound the excess frequency noise introduced in the harmonic generation process. We report an amplitude spectral density of frequency noise with total RMS frequency deviation of 3mHz and a minimum value of 20 {\mu}Hz/rtHz over 250 seconds with a measurement bandwidth of 128 Hz, corresponding to an Allan deviation of 10^-19 at 20 seconds.Comment: Submitted to Optics Express June 201

    On the Reliability of Meta-Analytic Reviews

    Full text link
    The article addresses the issue of intercoder reliability in meta-analyses. The current practice of reporting a single, mean intercoder agreement score in meta-analytic research leads to systematic bias and overestimates the true reliability. An alternative approach is recommended in which average intercoder agreement scores or other reliability statistics are calculated within clusters of coded variables. These clusters form a hierarchy in which the correctness of coding decisions at a given level of the hierarchy is contingent on decisions made at higher levels. Two separate studies of intercoder agreement in meta-analysis are presented to assess the validity of the model.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67840/2/10.1177_0193841X9301700303.pd

    First search for gravitational waves from the youngest known neutron star

    Get PDF
    We present a search for periodic gravitational waves from the neutron star in the supernova remnant Cassiopeia A. The search coherently analyzes data in a 12 day interval taken from the fifth science run of the Laser Interferometer Gravitational-Wave Observatory. It searches gravitational-wave frequencies from 100 to 300 Hz and covers a wide range of first and second frequency derivatives appropriate for the age of the remnant and for different spin-down mechanisms. No gravitational-wave signal was detected. Within the range of search frequencies, we set 95% confidence upper limits of (0.7–1.2) × 10^(−24) on the intrinsic gravitational-wave strain, (0.4–4) × 10^(−4) on the equatorial ellipticity of the neutron star, and 0.005–0.14 on the amplitude of r-mode oscillations of the neutron star. These direct upper limits beat indirect limits derived from energy conservation and enter the range of theoretical predictions involving crystalline exotic matter or runaway r-modes. This paper is also the first gravitational-wave search to present upper limits on the r-mode amplitude

    Search for Gravitational-wave Inspiral Signals Associated with Short Gamma-ray Bursts During LIGO's Fifth and Virgo's First Science Run

    Get PDF
    Progenitor scenarios for short gamma-ray bursts (short GRBs) include coalescenses of two neutron stars or a neutron star and black hole, which would necessarily be accompanied by the emission of strong gravitational waves. We present a search for these known gravitational-wave signatures in temporal and directional coincidence with 22 GRBs that had sufficient gravitational-wave data available in multiple instruments during LIGO's fifth science run, S5, and Virgo's first science run, VSR1. We find no statistically significant gravitational-wave candidates within a [ – 5, + 1) s window around the trigger time of any GRB. Using the Wilcoxon-Mann-Whitney U-test, we find no evidence for an excess of weak gravitational-wave signals in our sample of GRBs. We exclude neutron star-black hole progenitors to a median 90% confidence exclusion distance of 6.7 Mpc
    • …
    corecore