28,870 research outputs found

    Impurity states in multiband s-wave superconductors: analysis of iron pnictides

    Get PDF
    We examine the effect of a single, non-magnetic impurity in a multiband, extended s-wave superconductor allowing for anisotropy of the gaps on the Fermi surfaces. We derive analytic expressions for the Green's functions in the continuum and analyse the conditions for the existence of sharp impurity-induced resonant states. Underlying band structure is more relevant for the multiband than for single band case, and mismatch between the bands generically makes the formation of the impurity states less likely in the physical regime of parameters. We confirm these conclusions by numerically solving the impurity problem in a tight-binding parameterization of the bands relevant to pnictide superconductors.Comment: minor corrections, published versio

    Extracting Energy from Accretion into Kerr Black Hole

    Get PDF
    The highest efficiency of converting rest mass into energy by accreting matter into a Kerr black hole is ~ 31% (Thorne 1974). We propose a new process in which periods of accretion from a thin disk, and the associated spin-up of the black hole, alternate with the periods of no accretion and magnetic transfer of energy from the black hole to the disk. These cycles can repeat indefinitely, at least in principle, with the black hole mass increasing by ~ 66% per cycle, and up to ~ 43% of accreted rest mass radiated away by the disk.Comment: 4 pages, 1 figur

    ALOHA With Collision Resolution(ALOHA-CR): Theory and Software Defined Radio Implementation

    Full text link
    A cross-layer scheme, namely ALOHA With Collision Resolution (ALOHA-CR), is proposed for high throughput wireless communications in a cellular scenario. Transmissions occur in a time-slotted ALOHA-type fashion but with an important difference: simultaneous transmissions of two users can be successful. If more than two users transmit in the same slot the collision cannot be resolved and retransmission is required. If only one user transmits, the transmitted packet is recovered with some probability, depending on the state of the channel. If two users transmit the collision is resolved and the packets are recovered by first over-sampling the collision signal and then exploiting independent information about the two users that is contained in the signal polyphase components. The ALOHA-CR throughput is derived under the infinite backlog assumption and also under the assumption of finite backlog. The contention probability is determined under these two assumptions in order to maximize the network throughput and maintain stability. Queuing delay analysis for network users is also conducted. The performance of ALOHA-CR is demonstrated on the Wireless Open Access Research Platform (WARP) test-bed containing five software defined radio nodes. Analysis and test-bed results indicate that ALOHA-CR leads to significant increase in throughput and reduction of service delays
    corecore