216 research outputs found
Theory of dark resonances for alkali vapors in a buffer-gas cell
We develop an analytical theory of dark resonances that accounts for the full
atomic-level structure, as well as all field-induced effects such as coherence
preparation, optical pumping, ac Stark shifts, and power broadening. The
analysis uses a model based on relaxation constants that assumes the total
collisional depolarization of the excited state. A good qualitative agreement
with experiments for Cs in Ne is obtained.Comment: 16 pages; 7 figures; revtex4. Accepted for publication in PR
Cancellation of the collisional frequency shift in caesium fountain clocks
We have observed that the collisional frequency shift in primary caesium
fountain clocks varies with the clock state population composition and, in
particular, is zero for a given fraction of the |F = 4, mF = 0> atoms,
depending on the initial cloud parameters. We present a theoretical model
explaining our observations. The possibility of the collisional shift
cancellation implies an improvement in the performance of caesium fountain
standards and a simplification in their operation. Our results also have
implications for test operation of fountains at multiple pi/2 pulse areas
A high-sensitivity laser-pumped Mx magnetometer
Abstract.: We discuss the design and performance of a laser-pumped cesium vapor magnetometer in the Mx configuration. The device will be employed in the control and stabilization of fluctuating magnetic fields and gradients in a new experiment searching for a permanent electric dipole moment of the neutron. We have determined the intrinsic sensitivity of the device to be 15 fT in a 1 Hz bandwidth, limited by technical laser noise. In the shot noise limit the magnetometer can reach a sensitivity of 10 fT in a 1 Hz bandwidth. We have used the device to study the fluctuations of a stable magnetic field in a multi-layer magnetic shield for integration times in the range of 2-100 seconds. The residual fluctuations for times up to a few minutes are traced back to the instability of the power supply used to generate the fiel
EIT and diffusion of atomic coherence
We study experimentally the effect of diffusion of Rb atoms on
Electromagnetically Induced Transparency (EIT) in a buffer gas vapor cell. In
particular, we find that diffusion of atomic coherence in-and-out of the laser
beam plays a crucial role in determining the EIT resonance lineshape and the
stored light lifetime.Comment: 5 pages, 8 figure
Buffer-gas induced absorption resonances in Rb vapor
We observe transformation of the electromagnetically induced transparency
(EIT) resonance into the absorption resonance in a interaction
configuration in a cell filled with Rb and a buffer gas. This
transformation occurs as a one-photon detuning of the coupling fields is varied
from the atomic transition. No such absorption resonance is found in the
absence of a buffer gas. The width of the absorption resonance is several times
smaller than the width of the EIT resonance, and the changes of absorption near
these resonances are about the same. Similar absorption resonances are detected
in the Hanle configuration in a buffered cell.Comment: 11 pages, 15 figures; 13 pages, 17 figures, added numerical
simulatio
On the unique possibility to increase significantly the contrast of dark resonances on D1 line of Rb
We propose and study, theoretically and experimentally, a new scheme of
excitation of a coherent population trapping resonance for D1 line of alakli
atoms with nuclear spin by bichromatic linearly polarized light ({\em
lin}{\em lin} field) at the conditions of spectral resolution of the
excited state. The unique properties of this scheme result in a high contrast
of dark resonance for D1 line of Rb.Comment: 9 pages, 7 figures. This material has been partially presented on
ICONO-2005, 14 May 2005, St. Petersburg, Russia. v2 references added; text is
changed a bi
Experimental implementation of a four-level N-type scheme for the observation of Electromagnetically Induced Transparency
A nondegenerate four-level N-type scheme was experimentally implemented to
observe electromagnetically induced transparency (EIT) at the Rb D
line. Radiations of two independent external-cavity semiconductor lasers were
used in the experiment, the current of one of them being modulated at a
frequency equal to the hyperfine-splitting frequency of the excited 5P
level. In this case, apart from the main EIT dip corresponding to the
two-photon Raman resonance in a three-level -scheme, additional dips
detuned from the main dip by a frequency equal to the frequency of the HF
generator were observed in the absorption spectrum. These dips were due to an
increase in the medium transparency at frequencies corresponding to the
three-photon Raman resonances in four-level N-type schemes. The resonance
shapes are analyzed as functions of generator frequency and magnetic field.Comment: 3 pages, 2 figure
A Quantum Scattering Interferometer
The collision of two ultra-cold atoms results in a quantum-mechanical
superposition of two outcomes: each atom continues without scattering and each
atom scatters as a spherically outgoing wave with an s-wave phase shift. The
magnitude of the s-wave phase shift depends very sensitively on the interaction
between the atoms. Quantum scattering and the underlying phase shifts are
vitally important in many areas of contemporary atomic physics, including
Bose-Einstein condensates, degenerate Fermi gases, frequency shifts in atomic
clocks, and magnetically-tuned Feshbach resonances. Precise measurements of
quantum scattering phase shifts have not been possible until now because, in
scattering experiments, the number of scattered atoms depends on the s-wave
phase shifts as well as the atomic density, which cannot be measured precisely.
Here we demonstrate a fundamentally new type of scattering experiment that
interferometrically detects the quantum scattering phase shifts of individual
atoms. By performing an atomic clock measurement using only the scattered part
of each atom, we directly and precisely measure the difference of the s-wave
phase shifts for the two clock states in a density independent manner. Our
method will give the most direct and precise measurements of ultracold
atom-atom interactions and will place stringent limits on the time variations
of fundamental constants.Comment: Corrected formatting and typo
- …
