20 research outputs found

    Transcriptional Profiling of Human Liver Identifies Sex-Biased Genes Associated with Polygenic Dyslipidemia and Coronary Artery Disease

    Get PDF
    Sex-differences in human liver gene expression were characterized on a genome-wide scale using a large liver sample collection, allowing for detection of small expression differences with high statistical power. 1,249 sex-biased genes were identified, 70% showing higher expression in females. Chromosomal bias was apparent, with female-biased genes enriched on chrX and male-biased genes enriched on chrY and chr19, where 11 male-biased zinc-finger KRAB-repressor domain genes are distributed in six clusters. Top biological functions and diseases significantly enriched in sex-biased genes include transcription, chromatin organization and modification, sexual reproduction, lipid metabolism and cardiovascular disease. Notably, sex-biased genes are enriched at loci associated with polygenic dyslipidemia and coronary artery disease in genome-wide association studies. Moreover, of the 8 sex-biased genes at these loci, 4 have been directly linked to monogenic disorders of lipid metabolism and show an expression profile in females (elevated expression of ABCA1, APOA5 and LDLR; reduced expression of LIPC) that is consistent with the lower female risk of coronary artery disease. Female-biased expression was also observed for CYP7A1, which is activated by drugs used to treat hypercholesterolemia. Several sex-biased drug-metabolizing enzyme genes were identified, including members of the CYP, UGT, GPX and ALDH families. Half of 879 mouse orthologs, including many genes of lipid metabolism and homeostasis, show growth hormone-regulated sex-biased expression in mouse liver, suggesting growth hormone might play a similar regulatory role in human liver. Finally, the evolutionary rate of protein coding regions for human-mouse orthologs, revealed by dN/dS ratio, is significantly higher for genes showing the same sex-bias in both species than for non-sex-biased genes. These findings establish that human hepatic sex differences are widespread and affect diverse cell metabolic processes, and may help explain sex differences in lipid profiles associated with sex differential risk of coronary artery disease

    Genetic Background and Sex: Impact on Generalizability of Research Findings in Pharmacology Studies

    Get PDF
    Animal models consisting of inbred laboratory rodent strains have been a powerful tool for decades, helping to unravel the underpinnings of biological problems and employed to evaluate potential therapeutic treatments in drug discovery. While inbred strains demonstrate relatively reliable and predictable responses, using a single inbred strain alone or as a background to a mutation is analogous to running a clinical trial in a single individual and their identical twins. Indeed, complex etiologies drive the most common human diseases, and a single inbred strain that is a surrogate of a single genome, or data generated from a single sex, is not representative of the genetically diverse patient populations. Further, pharmacological and toxicology data generated in otherwise healthy animals may not translate to disease states where physiology, metabolism, and general health are compromised. The purpose of this chapter is to provide guidance for improving generalizability of preclinical studies by providing insight into necessary considerations for introducing systematic variation within the study design, such as genetic diversity, the use of both sexes, and selection of appropriate age and disease model. The outcome of implementing these considerations should be that reproducibility and generalizability of significant results are significantly enhanced leading to improved clinical translation
    corecore