700 research outputs found
The Baikal Neutrino Telescope: Status and plans
The high energy neutrino telescope NT200+ is currently in operation in Lake
Baikal. We review the status of the Baikal the Baikal Neutrino Telescope, and
describe recent progress on key components of the next generation
kilometer-cube (km3) Lake Baikal detector, like investigation of new large area
phototubes, integrated into the telescope.Comment: 4 pages, 4 figures, presented at the 30th ICRC, Merida, Mexico, July
200
Scaling the Temperature-dependent Boson Peak of Vitreous Silica with the high-frequency Bulk Modulus derived from Brillouin Scattering Data
The position and strength of the boson peak in silica glass vary considerably
with temperature . Such variations cannot be explained solely with changes
in the Debye energy. New Brillouin scattering measurements are presented which
allow determining the -dependence of unrelaxed acoustic velocities. Using a
velocity based on the bulk modulus, scaling exponents are found which agree
with the soft-potential model. The unrelaxed bulk modulus thus appears to be a
good measure for the structural evolution of silica with and to set the
energy scale for the soft potentials.Comment: Accepted for publication in Physical Review Letter
Dynamic rotor mode in antiferromagnetic nanoparticles
We present experimental, numerical, and theoretical evidence for a new mode
of antiferromagnetic dynamics in nanoparticles. Elastic neutron scattering
experiments on 8 nm particles of hematite display a loss of diffraction
intensity with temperature, the intensity vanishing around 150 K. However, the
signal from inelastic neutron scattering remains above that temperature,
indicating a magnetic system in constant motion. In addition, the precession
frequency of the inelastic magnetic signal shows an increase above 100 K.
Numerical Langevin simulations of spin dynamics reproduce all measured neutron
data and reveal that thermally activated spin canting gives rise to a new type
of coherent magnetic precession mode. This "rotor" mode can be seen as a
high-temperature version of superparamagnetism and is driven by exchange
interactions between the two magnetic sublattices. The frequency of the rotor
mode behaves in fair agreement with a simple analytical model, based on a high
temperature approximation of the generally accepted Hamiltonian of the system.
The extracted model parameters, as the magnetic interaction and the axial
anisotropy, are in excellent agreement with results from Mossbauer
spectroscopy
Fragility and compressibility at the glass transition
Isothermal compressibilities and Brillouin sound velocities from the
literature allow to separate the compressibility at the glass transition into a
high-frequency vibrational and a low-frequency relaxational part. Their ratio
shows the linear fragility relation discovered by x-ray Brillouin scattering
[1], though the data bend away from the line at higher fragilities. Using the
concept of constrained degrees of freedom, one can show that the vibrational
part follows the fragility-independent Lindemann criterion; the fragility
dependence seems to stem from the relaxational part. The physical meaning of
this finding is discussed. [1] T. Scopigno, G. Ruocco, F. Sette and G. Monaco,
Science 302, 849 (2003)Comment: 4 pages, 2 figures, 2 tables, 33 references. Slightly changed after
refereein
- …