130,997 research outputs found

    Comment on ``Stripes and the t-J Model''

    Full text link
    This is a comment being submitted to Physical Review Letters on a recent letter by Hellberg and Manousakis on stripes in the t-J model.Comment: One reference correcte

    Checkerboard patterns in the t-J model

    Full text link
    Using the density matrix renormalization group, we study the possibility of real space checkerboard patterns arising as the ground states of the t-J model. We find that checkerboards with a commensurate (pi,pi) background are not low energy states and can only be stabilized with large external potentials. However, we find that striped states with charge density waves along the stripes can form approximate checkerboard patterns. These states can be stabilized with a very weak external field aligning and pinning the CDWs on different stripes.Comment: 4 pages, 5 figure

    Income Taxes on Beneficiaries of Pension and Profit-Sharing Plans

    Get PDF

    Charge Stripe in an Antiferromagnet: 1d Band of Composite Excitations

    Full text link
    With the help of analytical and numerical studies of the tt-JzJ_z model we argue that the charge stripe in an antiferromagnetic insulator should be understood as a system of holon-spin-polaron excitations condensed at the self-induced antiphase domain wall. The structure of such a charge excitation is studied in detail with numerical and analytical results for various quantities being in a very close agreement. An analytical picture of these excitations occupying an effective 1D stripe band is also in a very good accord with numerical data. The emerging concept advocates the primary role of the kinetic energy in favoring the stripe as a ground state. A comparative analysis suggests the effect of pairing and collective meandering on the energetics of the stripe formation to be secondary.Comment: 5 pages, 3 figures, proceedings of SCES'01 conference, Ann Arbor, 2001, to be published in Physica

    Density matrix renormalization group algorithms with a single center site

    Full text link
    We develop a correction to the density matrix used in density matrix renormalization group calculations to take into account the incompleteness of the environment block. The correction allows successful calculations using only a single site in the center of the system, rather than the standard two sites, improving typical computation times by a factor of two to four. In addition, in many cases where ordinary DMRG can get stuck in metastable configurations, the correction eliminates the sticking. We test the new method on the Heisenberg S=1 chain.Comment: 4 pages, 4 figure
    • …
    corecore