120 research outputs found

    Predictors of persistently positive Mycobacterium-tuberculosis-specific interferon-gamma responses in the serial testing of health care workers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Data on the performance of Mycobacterium-tuberculosis-specific interferon-(IFN)-γ release assays (IGRAs) in the serial testing of health care workers (HCWs) is limited. The objective of the present study was to determine the frequency of IGRA conversions and reversions and to identify predictors of persistent IGRA positivity among serially tested German HCWs in the absence of recent extensive tuberculosis (TB) exposure.</p> <p>Methods</p> <p>In this observational cohort-study HCWs were prospectively recruited within occupational safety and health measures and underwent a tuberculin skin test (TST) and the IGRA QuantiFERON<sup>®</sup>-TB Gold In-Tube (QFT-GIT) at baseline. The QFT-GIT was repeated 18 weeks later in the median. QFT-GIT conversions (and reversions) were defined as baseline IFN-γ < 0.35 IU/ml and follow-up IFN-γ ≥ 0.35 IU/ml (and vice versa). Predictors of persistently positive QFT-GIT results were calculated by logistic regression analysis.</p> <p>Results</p> <p>In total, 18 (9.9%) and 15 (8.2%) of 182 analyzed HCWs were QFT-GIT-positive at baseline and at follow-up, respectively. We observed a strong overall agreement between baseline and follow-up QFT-GIT results (κ = 0.70). Reversions (6/18, 33.3%) occurred more frequently than conversions (3/162, 1.9%). Age and positive prior and recent TST results independently predicted persistent QFT-GIT positivity. Furthermore, the chance of having persistently positive QFT-GIT results raised about 3% with each additional 0.1 IU/ml increase in the baseline IFN-γ response (adjusted odds ratio 1.03, 95% confidence interval 1.01-1.04). No active TB cases were detected within an observational period of more than two years.</p> <p>Conclusions</p> <p>The QFT-GIT's utility for the application in serial testing was limited by a substantial proportion of reversions. This shortcoming could be overcome by the implementation of a borderline zone for the interpretation of QFT-GIT results. However, further studies are needed to clearly define the within-subject variability of the QFT-GIT and to confirm that increasing age, concordantly positive TST results, and the extend of baseline IFN-γ responses may predict the persistence of QFT-GIT positivity over time in serially tested HCWs with only a low or medium TB screening risk in a TB low-incidence setting.</p

    LISA technology and instrumentation

    Full text link
    This article reviews the present status of the technology and instrumentation for the joint ESA/NASA gravitational wave detector LISA. It briefly describes the measurement principle and the mission architecture including the resulting sensitivity before focussing on a description of the main payload items, such as the interferomtric measurement system, comprising the optical system with the optical bench and the telescope, the laser system, and the phase measurement system; and the disturbance reduction system with the inertial sensor, the charge control system, and the micropropulsion system. The article touches upon the requirements for the different subsystems that need to be fulfilled to obtain the overall sensitivity.Comment: 37 pages, 18 figures, submitted to CQ

    Role of 4-1BB Receptor in the Control Played by CD8+ T Cells on IFN-γ Production by Mycobacterium tuberculosis Antigen-Specific CD4+ T Cells

    Get PDF
    BACKGROUND: Antigen-specific IFN-gamma producing CD4(+) T cells are the main mediators of protection against Mycobacterium tuberculosis infection both under natural conditions and following vaccination. However these cells are responsible for lung damage and poor vaccine efficacy when not tightly controlled. Discovering new tools to control nonprotective antigen-specific IFN-gamma production without affecting protective IFN-gamma is a challenge in tuberculosis research. METHODS AND FINDINGS: Immunization with DNA encoding Ag85B, a candidate vaccine antigen of Mycobacterium tuberculosis, elicited in mice a low but protective CD4(+) T cell-mediated IFN-gamma response, while in mice primed with DNA and boosted with Ag85B protein a massive increase in IFN-gamma response was associated with loss of protection. Both protective and non-protective Ag85B-immunization generated antigen-specific CD8(+) T cells which suppressed IFN-gamma-secreting CD4(+) T cells. However, ex vivo ligation of 4-1BB, a member of TNF-receptor super-family, reduced the massive, non-protective IFN-gamma responses by CD4(+) T cells in protein-boosted mice without affecting the low protective IFN-gamma-secretion in mice immunized with DNA. This selective inhibition was due to the induction of 4-1BB exclusively on CD8(+) T cells of DNA-primed and protein-boosted mice following Ag85B protein stimulation. The 4-1BB-mediated IFN-gamma inhibition did not require soluble IL-10, TGF-beta, XCL-1 and MIP-1beta. In vivo Ag85B stimulation induced 4-1BB expression on CD8(+) T cells and in vivo 4-1BB ligation reduced the activation, IFN-gamma production and expansion of Ag85B-specific CD4(+) T cells of DNA-primed and protein-boosted mice. CONCLUSION/SIGNIFICANCE: Antigen-specific suppressor CD8(+) T cells are elicited through immunization with the mycobacterial antigen Ag85B. Ligation of 4-1BB receptor further enhanced their suppressive activity on IFN-gamma-secreting CD4(+) T cells. The selective expression of 4-1BB only on CD8(+) T cells in mice developing a massive, non-protective IFN-gamma response opens novel strategies for intervention in tuberculosis pathology and vaccination through T-cell co-stimulatory-based molecular targeting

    CAF01 Potentiates Immune Responses and Efficacy of an Inactivated Influenza Vaccine in Ferrets

    Get PDF
    Trivalent inactivated vaccines (TIV) against influenza are given to 350 million people every year. Most of these are non-adjuvanted vaccines whose immunogenicity and protective efficacy are considered suboptimal. Commercially available non-adjuvanted TIV are known to elicit mainly a humoral immune response, whereas the induction of cell-mediated immune responses is negligible. Recently, a cationic liposomal adjuvant (dimethyldioctadecylammonium/trehalose 6,6′-dibehenate, CAF01) was developed. CAF01 has proven to enhance both humoral and cell-mediated immune responses to a number of different experimental vaccine candidates. In this study, we compared the immune responses in ferrets to a commercially available TIV with the responses to the same vaccine mixed with the CAF01 adjuvant. Two recently circulating H1N1 viruses were used as challenge to test the vaccine efficacy. CAF01 improved the immunogenicity of the vaccine, with increased influenza-specific IgA and IgG levels. Additionally, CAF01 promoted cellular-mediated immunity as indicated by interferon-gamma expressing lymphocytes, measured by flow cytometry. CAF01 also enhanced the protection conferred by the vaccine by reducing the viral load measured in nasal washes by RT-PCR. Finally, CAF01 allowed for dose-reduction and led to higher levels of protection compared to TIV adjuvanted with a squalene emulsion. The data obtained in this human-relevant challenge model supports the potential of CAF01 in future influenza vaccines

    A Liposome-Based Mycobacterial Vaccine Induces Potent Adult and Neonatal Multifunctional T Cells through the Exquisite Targeting of Dendritic Cells

    Get PDF
    BACKGROUND: In the search for more potent and safer tuberculosis vaccines, CAF01 was identified as a remarkable formulation. Based on cationic liposomes and including a synthetic mycobacterial glycolipid as TLR-independent immunomodulator, it induces strong and protective T helper-1 and T helper-17 adult murine responses to Ag85B-ESAT-6, a major mycobacterial fusion protein. Here, we assessed whether these properties extend to early life and how CAF01 mediates its adjuvant properties in vivo. METHODS/FINDINGS: Following adult or neonatal murine immunization, Ag85B-ESAT-6/CAF01 similarly reduced the post-challenge bacterial growth of M. bovis BCG, whereas no protection was observed using Alum as control. This protection was mediated by the induction of similarly strong Th1 and Th17 responses in both age groups. Multifunctional Th1 cells were already elicited after a single vaccine dose and persisted at high levels for at least 6 months even after neonatal priming. Unexpectedly, this potent adjuvanticity was not mediated by a massive targeting/activation of dendritic cells: in contrast, very few DCs in the draining lymph nodes were bearing the labeled antigen/adjuvant. The increased expression of the CD40 and CD86 activation markers was restricted to the minute portion of adjuvant-bearing DCs. However, vaccine-associated activated DCs were recovered several days after immunization. CONCLUSION: The potent adult and neonatal adjuvanticity of CAF01 is associated in vivo with an exquisite but prolonged DC uptake and activation, fulfilling the preclinical requirements for novel tuberculosis vaccines to be used in early life

    Cationic Liposomes Formulated with Synthetic Mycobacterial Cordfactor (CAF01): A Versatile Adjuvant for Vaccines with Different Immunological Requirements

    Get PDF
    It is now emerging that for vaccines against a range of diseases including influenza, malaria and HIV, the induction of a humoral response is insufficient and a substantial complementary cell-mediated immune response is necessary for adequate protection. Furthermore, for some diseases such as tuberculosis, a cellular response seems to be the sole effector mechanism required for protection. The development of new adjuvants capable of inducing highly complex immune responses with strong antigen-specific T-cell responses in addition to antibodies is therefore urgently needed. (cell-mediated/humoral) and malaria (humoral) immunization with CAF01-based vaccines elicited significant protective immunity against challenge.CAF01 is potentially a suitable adjuvant for a wide range of diseases including targets requiring both CMI and humoral immune responses for protection

    Neutrophils Promote Mycobacterial Trehalose Dimycolate-Induced Lung Inflammation via the Mincle Pathway

    Get PDF
    Trehalose 6,6′-dimycolate (TDM), a cord factor of Mycobacterium tuberculosis (Mtb), is an important regulator of immune responses during Mtb infections. Macrophages recognize TDM through the Mincle receptor and initiate TDM-induced inflammatory responses, leading to lung granuloma formation. Although various immune cells are recruited to lung granulomas, the roles of other immune cells, especially during the initial process of TDM-induced inflammation, are not clear. In this study, Mincle signaling on neutrophils played an important role in TDM-induced lung inflammation by promoting adhesion and innate immune responses. Neutrophils were recruited during the early stage of lung inflammation following TDM-induced granuloma formation. Mincle expression on neutrophils was required for infiltration of TDM-challenged sites in a granuloma model induced by TDM-coated-beads. TDM-induced Mincle signaling on neutrophils increased cell adherence by enhancing F-actin polymerization and CD11b/CD18 surface expression. The TDM-induced effects were dependent on Src, Syk, and MAPK/ERK kinases (MEK). Moreover, coactivation of the Mincle and TLR2 pathways by TDM and Pam3CSK4 treatment synergistically induced CD11b/CD18 surface expression, reactive oxygen species, and TNFα production by neutrophils. These synergistically-enhanced immune responses correlated with the degree of Mincle expression on neutrophil surfaces. The physiological relevance of the Mincle-mediated anti-TDM immune response was confirmed by defective immune responses in Mincle−/− mice upon aerosol infections with Mtb. Mincle-mutant mice had higher inflammation levels and mycobacterial loads than WT mice. Neutrophil depletion with anti-Ly6G antibody caused a reduction in IL-6 and monocyte chemotactic protein-1 expression upon TDM treatment, and reduced levels of immune cell recruitment during the initial stage of infection. These findings suggest a new role of Mincle signaling on neutrophils during anti-mycobacterial responses
    • …
    corecore