42,469 research outputs found

    Interatomic collisions in two-dimensional and quasi-two-dimensional confinements with spin-orbit coupling

    Full text link
    We investigate the low-energy scattering and bound states of two two-component fermionic atoms in pure two-dimensional (2D) and quasi-2D confinements with Rashba spin-orbit coupling (SOC). We find that the SOC qualitatively changes the behavior of the 2D scattering amplitude in the low-energy limit. For quasi-2D systems we obtain the analytic expression for the effective-2D scattering amplitude and the algebraic equations for the two-atom bound state energy. Based on these results, we further derive the effective 2D interaction potential between two ultracold atoms in the quasi-2D confinement with Rashba SOC. These results are crucial for the control of the 2D effective physics in quasi-2D geometry via the confinement intensity and the atomic three-dimensional scattering length.Comment: 13pages, 5 figure

    Coexistence of Antiferromagnetism and Triplet Superconductivity

    Full text link
    The authors discuss the possibility of coexistence of antiferromagnetism and triplet superconductivity as a particular example of a broad class of systems where the interplay of magnetism and superconductivity is important. This paper focuses on the case of quasi-one-dimensional metals, where it is known experimentally that antiferromagnetism is in close proximity to triplet superconductivity in the temperature versus pressure phase diagram. Over a narrow range of pressures, the authors propose an intermediate non-uniform phase consisting of alternating insulating antiferromagnetic and triplet superonducting stripes.Comment: 9 pages, 3 figures. 2004 Conference of Magnetism and Magnetic Material

    The supersymmetric affine Yangian

    Full text link
    The affine Yangian of gl1\mathfrak{gl}_1 is known to be isomorphic to W1+{\cal W}_{1+\infty}, the WW-algebra that characterizes the bosonic higher spin -- CFT duality. In this paper we propose defining relations of the Yangian that are relevant for the N=2{\cal N}=2 superconformal version of W1+{\cal W}_{1+\infty}. Our construction is based on the observation that the N=2{\cal N}=2 superconformal W1+{\cal W}_{1+\infty} algebra contains two commuting bosonic W1+{\cal W}_{1+\infty} algebras, and that the additional generators transform in bi-minimal representations with respect to these two algebras. The corresponding affine Yangian can therefore be built up from two affine Yangians of gl1\mathfrak{gl}_1 by adding in generators that transform appropriately.Comment: 35 pages, 5 figure

    The structural, mechanical, electronic, optical and thermodynamic properties of t-X3_{3}As4_{4} (X == Si, Ge and Sn) by first-principles calculations

    Full text link
    The structural, mechanical, electronic, optical and thermodynamic properties of the t-X3_{\mathrm{3}}As4_{\mathrm{4}} (X == Si, Ge and Sn) with tetragonal structure have been investigated by first principles calculations. Our calculated results show that these compounds are mechanically and dynamically stable. By the study of elastic anisotropy, it is found that the anisotropic of the t-Sn3_{\mathrm{3}}As4_{\mathrm{4}} is stronger than that of t-Si3_{\mathrm{3}}As4_{\mathrm{4}} and t-Ge3_{\mathrm{3}}As4_{\mathrm{4}}. The band structures and density of states show that the t-X3_{\mathrm{3}}As4_{\mathrm{4}} (Si, Ge and Sn) are semiconductors with narrow band gaps. Based on the analyses of electron density difference, in t-X3_{\mathrm{3}}As4_{\mathrm{4}} As atoms get electrons, X atoms lose electrons. The calculated static dielectric constants, ε1(0)\varepsilon_{1} (0), are 15.5, 20.0 and 15.1 eV for t-X3_{\mathrm{3}}As4_{\mathrm{4}} (X == Si, Ge and Sn), respectively. The Dulong-Petit limit of t-X3_{\mathrm{3}}As4_{\mathrm{4}} is about 10 J mol1^{\mathrm{-1}}K1^{\mathrm{-1}}. The thermodynamic stability successively decreases from t-Si3_{\mathrm{3}}As4_{\mathrm{4}} to t-Ge3_{\mathrm{3}}As4_{\mathrm{4}} to t-Sn3_{\mathrm{3}}As4_{\mathrm{4}}.Comment: 14 pages, 10 figures, 6 table

    Coexistence of Spin Density Wave and Triplet Superconductivity

    Full text link
    We discuss the possibility of coexistence of spin density wave (antiferromagnetism) and triplet superconductivity as a particular example of a broad class of systems where the interplay of magnetism and superconductivity is important. We focus on the case of quasi-one-dimensional metals, where it is known experimentally that antiferromagnetism is in close proximity to triplet superconductivity in the temperature versus pressure phase diagram. Over a narrow range of pressures, we propose an intermediate non-uniform phase consisting of alternating antiferromagnetic and triplet superconducting stripes. Within the non-uniform phase there are also changes between two and three dimensional behavior.Comment: Revtex4, 4 pages, 5 figure

    A comprehensive analysis of Swift/XRT data: I. Apparent spectral evolution of GRB X-ray tails

    Full text link
    An early steep decay component following the prompt GRBs is commonly observed in {\em Swift} XRT light curves, which is regarded as the tail emission of the prompt gamma-rays. Prompted by the observed strong spectral evolution in the tails of GRBs 060218 and 060614, we present a systematic time-resolved spectral analysis for the {\em Swift} GRB tails detected between 2005 February and 2007 January. We select a sample of 44 tails that are bright enough to perform time-resolved spectral analyses. Among them 11 tails are smooth and without superimposing significant flares, and their spectra have no significant temporal evolution. We suggest that these tails are dominated by the curvature effect of the prompt gamma-rays due to delay of propagation of photons from large angles with respect to the line of sight . More interestingly, 33 tails show clear hard-to-soft spectral evolution, with 16 of them being smooth tails directly following the prompt GRBs,while the others being superimposed with large flares. We focus on the 16 clean, smooth tails and consider three toy models to interpret the spectral evolution. The curvature effect of a structured jet and a model invoking superposition of the curvature effect tail and a putative underlying soft emission component cannot explain all the data. The third model, which invokes an evolving exponential spectrum, seems to reproduce both the lightcurve and the spectral evolution of all the bursts, including GRBs 060218 and 060614. More detailed physical models are called for to understand the apparent evolution effect.Comment: 13 pages in emulateapj style,6 figures, 1 table, expanded version, matched to published version, ApJ, 2007, in press. This is the first paper of a series. Paper II see arXiv:0705.1373 (ApJ,2007, in press
    corecore