237,305 research outputs found
A Solvable Sequence Evolution Model and Genomic Correlations
We study a minimal model for genome evolution whose elementary processes are
single site mutation, duplication and deletion of sequence regions and
insertion of random segments. These processes are found to generate long-range
correlations in the composition of letters as long as the sequence length is
growing, i.e., the combined rates of duplications and insertions are higher
than the deletion rate. For constant sequence length, on the other hand, all
initial correlations decay exponentially. These results are obtained
analytically and by simulations. They are compared with the long-range
correlations observed in genomic DNA, and the implications for genome evolution
are discussed.Comment: 4 pages, 4 figure
Intersections of homogeneous Cantor sets and beta-expansions
Let be the -part homogeneous Cantor set with
. Any string with
such that is called a code of . Let
be the set of having a unique code,
and let be the set of which make the intersection a
self-similar set. We characterize the set in a
geometrical and algebraical way, and give a sufficient and necessary condition
for . Using techniques from beta-expansions, we
show that there is a critical point , which is a
transcendental number, such that has positive
Hausdorff dimension if , and contains countably
infinite many elements if . Moreover, there exists a
second critical point
such that
has positive Hausdorff dimension if
, and contains countably infinite many elements if
.Comment: 23 pages, 4 figure
A cusp electron gun for millimeter wave gyrodevices
The experimental results of a thermionic cusp electron gun, to drive millimeter and submillimeter wave harmonic gyrodevices, are reported in this paper. Using a "smooth" magnetic field reversal formed by two coils this gun generated an annular-shaped, axis-encircling electron beam with 1.5 A current, and an adjustable velocity ratio alpha of up to 1.56 at a beam voltage of 40 kV. The beam cross-sectional shape and transported beam current were measured by a witness plate technique and Faraday cup, respectively. These measured results were found to be in excellent agreement with the simulated results using the three-dimensional code MAGIC
Recommended from our members
Plasma fluctuations as Markovian noise
Noise theory is used to study the correlations of stationary Markovian fluctuations that are homogeneous and isotropic in space. The relaxation of the fluctuations is modeled by the diffusion equation. The spatial correlations of random fluctuations are modeled by the exponential decay. Based on these models, the temporal correlations of random fluctuations, such as the correlation function and the power spectrum, are calculated. We find that the diffusion process can give rise to the decay of the correlation function and a broad frequency spectrum of random fluctuations. We also find that the transport coefficients may be estimated by the correlation length and the correlation time. The theoretical results are compared with the observed plasma density fluctuations from the tokamak and helimak experiments.Physic
Space Charge Behaviour in Oil-Paper Insulation with Different Aging Condition
Oil-paper insulation system is widely used in power transformers and cables. The dielectric properties of oilpaper insulation play an important role in the reliable operation of power equipment. Oil-paper insulation degrades under a combined stress of thermal (the most important factor), electrical, mechanical, and chemical stresses during routine operations, which has great effect on the dielectric properties of oil-paper insulation [1]. Space charge in oil-paper insulation has a close relation to its electrical performance [1]. In this paper, space charge behaviour of oil-paper insulation sample with three different ageing conditions (aged for 0, 35 and 77 days) was investigated using the pulsed electroacoustic (PEA) technique. The influence of aging on the space charge dynamics behaviour was analysed. Results show that aging has great effect on the space charge dynamics of oil-paper insulation. The homocharge injection takes place under all three aging conditions above. Positive charges tend to accumulate in the sample, and increase with the oil-paper insulation sample deterioration. The time to achieve the maximum injection charge density is 30s, 2min and 10min for oil-paper insulation sample aged for 0, 35 and 77 days, respectively. The maximum charge density injected in the sample aged for 77 days is more than two times larger than the initial sample. In addition, the charge decay speed becomes much slower with the aging time increase. There is an exponential relationship between the total charge amount and the decay time. The decay time constant ? increases with the increasing deterioration condition of the oil-paper insulation sample. The ? value may be used to reflect the aging status of oil-paper insulation
Simplifying the mosaic description of DNA sequences
By using the Jensen-Shannon divergence, genomic DNA can be divided into
compositionally distinct domains through a standard recursive segmentation
procedure. Each domain, while significantly different from its neighbours, may
however share compositional similarity with one or more distant
(non--neighbouring) domains. We thus obtain a coarse--grained description of
the given DNA string in terms of a smaller set of distinct domain labels. This
yields a minimal domain description of a given DNA sequence, significantly
reducing its organizational complexity. This procedure gives a new means of
evaluating genomic complexity as one examines organisms ranging from bacteria
to human. The mosaic organization of DNA sequences could have originated from
the insertion of fragments of one genome (the parasite) inside another (the
host), and we present numerical experiments that are suggestive of this
scenario.Comment: 16 pages, 1 figure, Accepted for publication in Phys. Rev.
Exact scaling in the expansion-modification system
This work is devoted to the study of the scaling, and the consequent
power-law behavior, of the correlation function in a mutation-replication model
known as the expansion-modification system. The latter is a biology inspired
random substitution model for the genome evolution, which is defined on a
binary alphabet and depends on a parameter interpreted as a \emph{mutation
probability}. We prove that the time-evolution of this system is such that any
initial measure converges towards a unique stationary one exhibiting decay of
correlations not slower than a power-law. We then prove, for a significant
range of mutation probabilities, that the decay of correlations indeed follows
a power-law with scaling exponent smoothly depending on the mutation
probability. Finally we put forward an argument which allows us to give a
closed expression for the corresponding scaling exponent for all the values of
the mutation probability. Such a scaling exponent turns out to be a piecewise
smooth function of the parameter.Comment: 22 pages, 2 figure
Boron nanobelts grown under intensive ion bombardment
High-quality α-tetragonal crystalline boronnanobelts with [001] growth axis were synthesized using a novel method combining e-beam evaporation and plasma ion bombardment techniques. Intensive ion bombardment of the growingboronnanobelts at a high substrate temperature (∼1200°C) was found to be effective in increasing the atomic density, reducing the crystal disorder, and improving the yield of the nanobelts.This work was supported by the Australian Research
Council ARC
Inelastic Collisions in an Ultracold quasi-2D Gas
We present a formalism for rigorous calculations of cross sections for
inelastic and reactive collisions of ultracold atoms and molecules confined by
laser fields in quasi-2D geometry. Our results show that the
elastic-to-inelastic ratios of collision cross sections are enhanced in the
presence of a laser confinement and that the threshold energy dependence of the
collision cross sections can be tuned by varying the confinement strength and
external magnetic fields. The enhancement of the elastic-to-inelastic ratios is
inversely proportional to , where is
the kinetic energy and is the oscillation frequency of the trapped
particles in the confinement potential.Comment: 4 pages, 4 figure
- …