2,313 research outputs found
Structural validation of oral mucosal tissue using optical coherence tomography
Background:
Optical coherence tomography (OCT) is a non-invasive optical technology using near-infrared light to produce cross-sectional tissue images with lateral resolution.
Objectives:
The overall aims of this study was to generate a bank of normative and pathological OCT data of the oral tissues to allow identification of cellular structures of normal and pathological processes with the aim to create a diagnostic algorithm which can be used in the early detection of oral disorders.
Material and methods:
Seventy-three patients with 78 suspicious oral lesions were referred for further management to the UCLH Head and Neck Centre, London. The entire cohort had their lesions surgically biopsied (incisional or excisional). The immediate ex vivo phase involved scanning the specimens using optical coherence tomography. The specimens were then processed by a histopathologist.
Five tissue structures were evaluated as part of this study, including: keratin cell layer, epithelial layer, basement membrane, lamina propria and other microanatomical structures. Two independent assessors (clinician and pathologist trained to use OCT) assessed the OCT images and were asked to comment on the cellular structures and changes involving the five tissue structures in non-blind fashion.
Results:
Correct identification of the keratin cell layer and its structural changes was achieved in 87% of the cohort; for the epithelial layer it reached 93.5%, and 94% for the basement membrane. Microanatomical structures identification was 64% for blood vessels, 58% for salivary gland ducts and 89% for rete pegs. The agreement was âgoodâ between the clinician and the pathologist.
OCT was able to differential normal from pathological tissue and pathological tissue of different entities in this immediate ex vivo study. Unfortunately, OCT provided inadequate cellular and subcellular information to enable the grading of oral premalignant disorders.
Conclusion:
This study enabled the creation of OCT bank of normal and pathological oral tissues. The pathological changes identified using OCT enabled differentiation between normal and pathological tissues, and identification of different tissue pathologies.
Further studies are required to assess the accuracy of OCT in identification of various pathological processes involving the oral tissues
Engineering model 8-cm thruster subsystem
An Engineering Model (EM) 8 cm Ion Thruster Propulsion Subsystem was developed for operation at a thrust level 5 mN (1.1 mlb) at a specific impulse 1 sub sp = 2667 sec with a total system input power P sub in = 165 W. The system dry mass is 15 kg with a mercury-propellant-reservoir capacity of 8.75 kg permitting uninterrupted operation for about 12,500 hr. The subsystem can be started from a dormant condition in a time less than or equal to 15 min. The thruster has a design lifetime of 20,000 hr with 10,000 startup cycles. A gimbal unit is included to provide a thrust vector deflection capability of + or - 10 degrees in any direction from the zero position. The EM subsystem development program included thruster optimization, power-supply circuit optimization and flight packaging, subsystem integration, and subsystem acceptance testing including a cyclic test of the total propulsion package
BCG treatment of malignant pleural effusions in the rat.
Intrapleurally injected cells of an ascitic rat tumour produced intrapleural effusions and solid pleural deposits. BCG, or its methanol extraction residue (MER) injected into the pleural space, suppressed tumour development and prolonged survival. Treatment was effective if given a few days before or after tumour injection. In contrast, active specific immunotherapy by repeated s.c. injection of viable or radiation-attenuated tumour cells in admixture with BCG was unsuccessful, and did not improve the response to intrapleural BCG treatment
On the Gold Standard for Security of Universal Steganography
While symmetric-key steganography is quite well understood both in the
information-theoretic and in the computational setting, many fundamental
questions about its public-key counterpart resist persistent attempts to solve
them. The computational model for public-key steganography was proposed by von
Ahn and Hopper in EUROCRYPT 2004. At TCC 2005, Backes and Cachin gave the first
universal public-key stegosystem - i.e. one that works on all channels -
achieving security against replayable chosen-covertext attacks (SS-RCCA) and
asked whether security against non-replayable chosen-covertext attacks (SS-CCA)
is achievable. Later, Hopper (ICALP 2005) provided such a stegosystem for every
efficiently sampleable channel, but did not achieve universality. He posed the
question whether universality and SS-CCA-security can be achieved
simultaneously. No progress on this question has been achieved since more than
a decade. In our work we solve Hopper's problem in a somehow complete manner:
As our main positive result we design an SS-CCA-secure stegosystem that works
for every memoryless channel. On the other hand, we prove that this result is
the best possible in the context of universal steganography. We provide a
family of 0-memoryless channels - where the already sent documents have only
marginal influence on the current distribution - and prove that no
SS-CCA-secure steganography for this family exists in the standard
non-look-ahead model.Comment: EUROCRYPT 2018, llncs styl
SOI CMOS MEMS infra-red thermal source with carbon nanotubes coating
This abstract presents the development of a Silicon-on-Insulator (SOI) CMOS micro-electro-mechanical (MEMS) micro-hotplate based infra-red (IR) light source employing a vertically aligned multi-walled carbon nanotubes (VAMWCNTs) emission layer. Chips were batch fabricated using a standard SOI CMOS process with tungsten metalization followed by a deep reactive ion etching (DRIE) post-CMOS process. VA-MWCNTs were grown at the chip level with a proven in-situ technique. The CNTs coated devices were compared with uncoated devices. Herein we discuss the device performance in terms of power dissipation, beam collimation, thermal transient times, integrated emitted radiation and emitted radiation spectral profile.</p
- âŚ