677 research outputs found

    Densities of internally mixed organic-inorganic particles from mobility diameter measurements of aerodynamically classified aerosols

    Get PDF
    Accurate knowledge of particle density is essential for many aspects of aerosol science. Yet, density is often characterized poorly and incompletely for internally mixed particles, particularly for dry particles, with previous studies focused primarily on deliquescent (aqueous) droplets. Instead, densities for dry internally mixed particles are often inferred from mass composition measurements in combination with predictive models assuming ideal mixing, with the accuracy of such models not estimated. We determined particle densities from mobility diameter measurements (using a Scanning Mobility Particle Sizer, SMPS) for dried particles classified by their aerodynamic size (using an Aerosol Aerodynamic Classifier, AAC) for a range of two-component organic-inorganic particles containing known proportions of organic and inorganic species. We examined all permutations of mixing between four different organic (water soluble nigrosin dye, citric acid, polyethylene glycol-400, and ascorbic acid) and three different inorganic (sodium chloride, ammonium sulfate, and sodium nitrate) species. The accuracy and precision in our measured particle densities were ∼5% and ∼1%, respectively, for nonvolatile particles. Substantial deviations in particle density from ideal mixing (up to 20%) were observed. We tested descriptions of the non-ideal mixing for our systems by representing the volume change of mixing using Redlich-Kister (RK) polynomials in terms of mass fraction or in terms of mole fraction, with both approaches performing similarly.</p

    Densities of internally mixed organic-inorganic particles from mobility diameter measurements of aerodynamically classified aerosols

    Get PDF
    Accurate knowledge of particle density is essential for many aspects of aerosol science. Yet, density is often characterized poorly and incompletely for internally mixed particles, particularly for dry particles, with previous studies focused primarily on deliquescent (aqueous) droplets. Instead, densities for dry internally mixed particles are often inferred from mass composition measurements in combination with predictive models assuming ideal mixing, with the accuracy of such models not estimated. We determined particle densities from mobility diameter measurements (using a Scanning Mobility Particle Sizer, SMPS) for dried particles classified by their aerodynamic size (using an Aerosol Aerodynamic Classifier, AAC) for a range of two-component organic-inorganic particles containing known proportions of organic and inorganic species. We examined all permutations of mixing between four different organic (water soluble nigrosin dye, citric acid, polyethylene glycol-400, and ascorbic acid) and three different inorganic (sodium chloride, ammonium sulfate, and sodium nitrate) species. The accuracy and precision in our measured particle densities were ∼5% and ∼1%, respectively, for nonvolatile particles. Substantial deviations in particle density from ideal mixing (up to 20%) were observed. We tested descriptions of the non-ideal mixing for our systems by representing the volume change of mixing using Redlich-Kister (RK) polynomials in terms of mass fraction or in terms of mole fraction, with both approaches performing similarly.</p

    Genomic characterization of Gli-activator targets in sonic hedgehog-mediated neural patterning

    Get PDF
    Sonic hedgehog (Shh) acts as a morphogen to mediate the specification of distinct cell identities in the ventral neural tube through a Gli-mediated (Gli1-3) transcriptional network. Identifying Gli targets in a systematic fashion is central to the understanding of the action of Shh. We examined this issue in differentiating neural progenitors in mouse. An epitope-tagged Gli-activator protein was used to directly isolate cis-regulatory sequences by chromatin immunoprecipitation (ChIP). ChIP products were then used to screen custom genomic tiling arrays of putative Hedgehog (Hh) targets predicted from transcriptional profiling studies, surveying 50-150 kb of non-transcribed sequence for each candidate. In addition to identifying expected Gli-target sites, the data predicted a number of unreported direct targets of Shh action. Transgenic analysis of binding regions in Nkx2.2, Nkx2.1 (Titf1) and Rab34 established these as direct Hh targets. These data also facilitated the generation of an algorithm that improved in silico predictions of Hh target genes. Together, these approaches provide significant new insights into both tissue-specific and general transcriptional targets in a crucial Shh-mediated patterning process

    DNA repair biomarkers XPF and phospho-MAPKAP kinase 2 correlate with clinical outcome in advanced head and neck cancer.

    Get PDF
    BackgroundInduction chemotherapy is a common therapeutic option for patients with locoregionally-advanced head and neck cancer (HNC), but it remains unclear which patients will benefit. In this study, we searched for biomarkers predicting the response of patients with locoregionally-advanced HNC to induction chemotherapy by evaluating the expression pattern of DNA repair proteins.MethodsExpression of a panel of DNA-repair proteins in formalin-fixed paraffin embedded specimens from a cohort of 37 HNC patients undergoing platinum-based induction chemotherapy prior to definitive chemoradiation were analyzed using quantitative immunohistochemistry.ResultsWe found that XPF (an ERCC1 binding partner) and phospho-MAPKAP Kinase 2 (pMK2) are novel biomarkers for HNSCC patients undergoing platinum-based induction chemotherapy. Low XPF expression in HNSCC patients is associated with better response to induction chemoradiotherapy, while high XPF expression correlates with a worse response (p = 0.02). Furthermore, low pMK2 expression was found to correlate significantly with overall survival after induction plus chemoradiation therapy (p = 0.01), suggesting that pMK2 may relate to chemoradiation therapy.ConclusionsWe identified XPF and pMK2 as novel DNA-repair biomarkers for locoregionally-advanced HNC patients undergoing platinum-based induction chemotherapy prior to definitive chemoradiation. Our study provides insights for the use of DNA repair biomarkers in personalized diagnostics strategies. Further validation in a larger cohort is indicated

    A new concurrent chemotherapy with vinorelbine and mitomycin C in combination with radiotherapy in patients with locally advanced squamous cell carcinoma of the head and neck

    Get PDF
    Objective: The purpose of this pilot study was to evaluate the feasibility and toxicity of concurrent chemotherapy with vinorelbine and mitomycin C in combination with accelerated radiotherapy (RT) in patients with locally advanced cancer of the head and neck. Patients and Methods: Between January 2003 and March 2004, 15 patients with T4/N2-3 squamous cell carcinoma (12/15) and with N3 cervical lymph node metastases of carcinoma of unknown primary (3/15) were treated with chemotherapy and simultaneous accelerated RT. Results: 11 patients completed therapy without interruption or dose reduction. Grade 3 - 4 acute mucosal toxicity was observed in 9/15 patients, grade 4 hematologic toxicity in 6/15 patients. At a median follow-up of 7.5 months, 2 patients have died of intercurrent disease, 2 patients have experienced local relapse; 5 patients are alive with no evidence of disease at the primary tumor site. Discussion: The described regimen is highly effective, but led to remarkable side effects

    Recombinant Human Parathyroid Hormone Effect on Health-Related Quality of Life in Adults With Chronic Hypoparathyroidism

    Get PDF
    Context: Reduced health-related quality of life (HRQoL) is common in patients with hypoparathyroidism on conventional therapy with calcium and active vitamin D supplements. Objective: To examine the effects of recombinant human parathyroid hormone (rhPTH[1-84]) on HRQoL as measured by the 36-Item Short Form Health Survey (SF-36) during the multinational, randomized, placebo-controlled REPLACE study. Patients: 122 adults with chronic hypoparathyroidism. Intervention(s): Following an optimization period when calcium and/or active vitamin D supplements were adjusted to reach target serum calcium levels (8.0-9.0 mg/dL; 2.0-2.2 mmol/L), patients were randomized to receive placebo (n=39) or rhPTH(1-84) (n=83) (starting dose 50 mug/day, could be titrated up to 100 mug/day); supplement doses were adjusted to maintain target serum calcium levels. Main Outcome Measure(s): Change from baseline (post-optimization, at randomization) to Week 24 in HRQoL as assessed by the SF-36v2 health survey. Results: Overall, the between-group differences were not statistically significant. However, in the rhPTH(1-84) group, there were significant improvements in the physical component summary score (P=0.004) and in body pain (P<0.05), general health (P<0.05), and vitality (P<0.001) domains as compared with baseline values. In the placebo group, there were no significant changes for any of the domains. The magnitude of change between 0 and 24 weeks in SF-36 scores was negatively correlated with baseline scores, such that patients with lower HRQoL at baseline were more likely to experience improvement in response to treatment. Conclusions: Treatment with rhPTH(1-84) may improve HRQoL in adults with hypoparathyroidism

    Reductive glutamine metabolism is a function of the α-ketoglutarate to citrate ratio in cells

    Get PDF
    Reductively metabolized glutamine is a major cellular carbon source for fatty acid synthesis during hypoxia or when mitochondrial respiration is impaired. Yet, a mechanistic understanding of what determines reductive metabolism is missing. Here we identify several cellular conditions where the α-ketoglutarate/citrate ratio is changed due to an altered acetyl-CoA to citrate conversion, and demonstrate that reductive glutamine metabolism is initiated in response to perturbations that result in an increase in the α-ketoglutarate/citrate ratio. Thus, targeting reductive glutamine conversion for a therapeutic benefit might require distinct modulations of metabolite concentrations rather than targeting the upstream signalling, which only indirectly affects the process.German Science Foundation (Grant FE1185)National Institutes of Health (U.S.) (Ruth L. Kirschstein National Research Service Award Postdoctoral Fellowship F32 CA132358)National Institutes of Health (U.S.) (Grant 5-P30-CA14051-39)Damon Runyon Cancer Research FoundationBurroughs Wellcome FundSmith Family FoundationNational Institutes of Health (U.S.) (Grant 1R01CA160458-01A1
    • …
    corecore