7,365 research outputs found

    Frequency shifting with a solid-state switching capacitor

    Get PDF
    Frequency shifting, commonly used in electronic signal processing, is applied in tuning, automatic frequency control, antenna element switching, phase shifting, etc. Frequency shifting can be accomplished economically and reliably with simple circuit comprising conventional resistor and solid-state switching device which can be equivalent to two capacitors, depending on switching state

    Composite metal-oxide device has voltage sensitive capacitance

    Get PDF
    Device with step function variation of the capacitance is useful for voltage-controlled oscillator circuits and as a voltage-sensitive switch. Simplicity of construction makes the device suitable for large-scale integration, microelectronic circuits

    Squeezing Inequalities and Entanglement for Identical Particles

    Full text link
    By identifying non-local effects in systems of identical Bosonic qubits through correlations of their commuting observables, we show that entanglement is not necessary to violate certain squeezing inequalities that hold for distinguishable qubits and that spin squeezing may not be necessary to achieve sub-shot noise accuracies in ultra-cold atom interferometry.Comment: 13 pages, LaTe

    Fault-Tolerant Quantum Dynamical Decoupling

    Full text link
    Dynamical decoupling pulse sequences have been used to extend coherence times in quantum systems ever since the discovery of the spin-echo effect. Here we introduce a method of recursively concatenated dynamical decoupling pulses, designed to overcome both decoherence and operational errors. This is important for coherent control of quantum systems such as quantum computers. For bounded-strength, non-Markovian environments, such as for the spin-bath that arises in electron- and nuclear-spin based solid-state quantum computer proposals, we show that it is strictly advantageous to use concatenated, as opposed to standard periodic dynamical decoupling pulse sequences. Namely, the concatenated scheme is both fault-tolerant and super-polynomially more efficient, at equal cost. We derive a condition on the pulse noise level below which concatenated is guaranteed to reduce decoherence.Comment: 5 pages, 4 color eps figures. v3: Minor changes. To appear in Phys. Rev. Let

    Thermopower in the Coulomb blockade regime for Laughlin quantum dots

    Full text link
    Using the conformal field theory partition function of a Coulomb-blockaded quantum dot, constructed by two quantum point contacts in a Laughlin quantum Hall bar, we derive the finite-temperature thermodynamic expression for the thermopower in the linear-response regime. The low-temperature results for the thermopower are compared to those for the conductance and their capability to reveal the structure of the single-electron spectrum in the quantum dot is analyzed.Comment: 11 pages, 3 figures, Proceedings of the 10-th International Workshop "Lie Theory and Its Applications in Physics", 17-23 June 2013, Varna, Bulgari

    Enhanced Convergence and Robust Performance of Randomized Dynamical Decoupling

    Get PDF
    We demonstrate the advantages of randomization in coherent quantum dynamical control. For systems which are either time-varying or require decoupling cycles involving a large number of operations, we find that simple randomized protocols offer superior convergence and stability as compared to deterministic counterparts. In addition, we show how randomization always allows to outperform purely deterministic schemes at long times, including combinatorial and concatenated methods. General criteria for optimally interpolating between deterministic and stochastic design are proposed and illustrated in explicit decoupling scenarios relevant to quantum information storage.Comment: 4 pages, 3 figures, replaced with final versio

    Efficient decoupling schemes with bounded controls based on Eulerian orthogonal arrays

    Get PDF
    The task of decoupling, i.e., removing unwanted interactions in a system Hamiltonian and/or couplings with an environment (decoherence), plays an important role in controlling quantum systems. There are many efficient decoupling schemes based on combinatorial concepts like orthogonal arrays, difference schemes and Hadamard matrices. So far these (combinatorial) decoupling schemes have relied on the ability to effect sequences of instantaneous, arbitrarily strong control Hamiltonians (bang-bang controls). To overcome the shortcomings of bang-bang control Viola and Knill proposed a method called Eulerian decoupling that allows the use of bounded-strength controls for decoupling. However, their method was not directly designed to take advantage of the composite structure of multipartite quantum systems. In this paper we define a combinatorial structure called an Eulerian orthogonal array. It merges the desirable properties of orthogonal arrays and Eulerian cycles in Cayley graphs (that are the basis of Eulerian decoupling). We show that this structure gives rise to decoupling schemes with bounded-strength control Hamiltonians that can be applied to composite quantum systems with few body Hamiltonians and special couplings with the environment. Furthermore, we show how to construct Eulerian orthogonal arrays having good parameters in order to obtain efficient decoupling schemes.Comment: 8 pages, revte

    Measured Quantum Dynamics of a Trapped Ion

    Get PDF
    The measurement process is taken into account in the dynamics of trapped ions prepared in nonclassical motional states. The induced decoherence is shown to manifest itself both in the inhibition of the internal population dynamics and in a damping of the vibrational motion without classical counterpart. Quantitative comparison with present experimental capabilities is discussed, leading to a proposal for the verification of the predicted effects.Comment: 5 Pages, no figures; Plain REVTeX; to be published in the 1st May issue of Phys. Rev. A, Rap. Commun. (1997

    Dynamical Decoupling Using Slow Pulses: Efficient Suppression of 1/f Noise

    Get PDF
    The application of dynamical decoupling pulses to a single qubit interacting with a linear harmonic oscillator bath with 1/f1/f spectral density is studied, and compared to the Ohmic case. Decoupling pulses that are slower than the fastest bath time-scale are shown to drastically reduce the decoherence rate in the 1/f1/f case. Contrary to conclusions drawn from previous studies, this shows that dynamical decoupling pulses do not always have to be ultra-fast. Our results explain a recent experiment in which dephasing due to 1/f1/f charge noise affecting a charge qubit in a small superconducting electrode was successfully suppressed using spin-echo-type gate-voltage pulses.Comment: 5 pages, 3 figures. v2: Many changes and update
    • …
    corecore