306 research outputs found
Evidence for long-term Gamma-ray and X-ray variability from the unidentified TeV source HESS J0632+057
HESS J0632+057 is one of only two unidentified very-high-energy gamma-ray
sources which appear to be point-like within experimental resolution. It is
possibly associated with the massive Be star MWC 148 and has been suggested to
resemble known TeV binary systems like LS I +61 303 or LS 5039. HESS J0632+057
was observed by VERITAS for 31 hours in 2006, 2008 and 2009. During these
observations, no significant signal in gamma rays with energies above 1 TeV was
detected from the direction of HESS J0632+057. A flux upper limit corresponding
to 1.1% of the flux of the Crab Nebula has been derived from the VERITAS data.
The non-detection by VERITAS excludes with a probability of 99.993% that HESS
J0632+057 is a steady gamma-ray emitter. Contemporaneous X-ray observations
with Swift XRT reveal a factor of 1.8+-0.4 higher flux in the 1-10 keV range
than earlier X-ray observations of HESS J0632+057. The variability in the
gamma-ray and X-ray fluxes supports interpretation of the ob ject as a
gamma-ray emitting binary.Comment: 8 pages, 3 figures, Accepted for publication in The Astrophysical
Journa
Observations of the unidentified gamma-ray source TeV J2032+4130 by VERITAS
TeV J2032+4130 was the first unidentified source discovered at very high
energies (VHE; E 100 GeV), with no obvious counterpart in any other
wavelength. It is also the first extended source to be observed in VHE gamma
rays. Following its discovery, intensive observational campaigns have been
carried out in all wavelengths in order to understand the nature of the object,
which have met with limited success. We report here on a deep observation of
TeV J2032+4130, based on 48.2 hours of data taken from 2009 to 2012 by the
VERITAS (Very Energetic Radiation Imaging Telescope Array System) experiment.
The source is detected at 8.7 standard deviations () and is found to be
extended and asymmetric with a width of 9.51.2 along
the major axis and 4.00.5 along the minor axis. The
spectrum is well described by a differential power law with an index of 2.10
0.14 0.21 and a normalization of (9.5
1.6 2.2) 10TeV cm
s at 1 TeV. We interpret these results in the context of multiwavelength
scenarios which particularly favor the pulsar wind nebula (PWN) interpretation
A connection between star formation activity and cosmic rays in the starburst galaxy M 82
Although Galactic cosmic rays (protons and nuclei) are widely believed to be
dominantly accelerated by the winds and supernovae of massive stars, definitive
evidence of this origin remains elusive nearly a century after their discovery
[1]. The active regions of starburst galaxies have exceptionally high rates of
star formation, and their large size, more than 50 times the diameter of
similar Galactic regions, uniquely enables reliable calorimetric measurements
of their potentially high cosmic-ray density [2]. The cosmic rays produced in
the formation, life, and death of their massive stars are expected to
eventually produce diffuse gamma-ray emission via their interactions with
interstellar gas and radiation. M 82, the prototype small starburst galaxy, is
predicted to be the brightest starburst galaxy in gamma rays [3, 4]. Here we
report the detection of >700 GeV gamma rays from M 82. From these data we
determine a cosmic-ray density of 250 eV cm-3 in the starburst core of M 82, or
about 500 times the average Galactic density. This result strongly supports
that cosmic-ray acceleration is tied to star formation activity, and that
supernovae and massive-star winds are the dominant accelerators.Comment: 18 pages, 4 figures; published in Nature; Version is prior to
Nature's in-house style editing (differences are minimal
Investigating the TeV Morphology of MGRO J1908+06 with VERITAS
We report on deep observations of the extended TeV gamma-ray source MGRO
J1908+06 made with the VERITAS very high energy (VHE) gamma-ray observatory.
Previously, the TeV emission has been attributed to the pulsar wind nebula
(PWN) of the Fermi-LAT pulsar PSR J1907+0602. We detect MGRO J1908+06 at a
significance level of 14 standard deviations (14 sigma) and measure a photon
index of 2.20 +/- 0.10_stat +/- 0.20_sys. The TeV emission is extended,
covering the region near PSR J1907+0602 and also extending towards SNR
G40.5--0.5. When fitted with a 2-dimensional Gaussian, the intrinsic extension
has a standard deviation of sigma_src = 0.44 +/- 0.02 degrees. In contrast to
other TeV PWNe of similar age in which the TeV spectrum softens with distance
from the pulsar, the TeV spectrum measured near the pulsar location is
consistent with that measured at a position near the rim of G40.5--0.5, 0.33
degrees away.Comment: To appear in ApJ, 8 page
VERITAS Upper Limit on the VHE Emission from the Radio Galaxy NGC 1275
The recent detection by the Fermi gamma-ray space telescope of high-energy
gamma-rays from the radio galaxy NGC 1275 makes the observation of the very
high energy (VHE: E > 100 GeV) part of its broadband spectrum particularly
interesting, especially for the understanding of active galactic nuclei (AGN)
with misaligned multi-structured jets. The radio galaxy NGC 1275 was recently
observed by VERITAS at energies above 100 GeV for about 8 hours. No VHE
gamma-ray emission was detected by VERITAS from NGC 1275. A 99% confidence
level upper limit of 2.1% of the Crab Nebula flux level is obtained at the
decorrelation energy of approximately 340 GeV, corresponding to 19% of the
power-law extrapolation of the Fermi Large Area Telescope (LAT) result.Comment: Accepted for publication in ApJ Letter
Detection of Extended VHE Gamma Ray Emission from G106.3+2.7 with VERITAS
We report the detection of very-high-energy (VHE) gamma-ray emission from
supernova remnant (SNR) G106.3+2.7. Observations performed in 2008 with the
VERITAS atmospheric Cherenkov gamma-ray telescope resolve extended emission
overlapping the elongated radio SNR. The 7.3 sigma (pre-trials) detection has a
full angular extent of roughly 0.6deg by 0.4deg. Most notably, the centroid of
the VHE emission is centered near the peak of the coincident 12CO (J = 1-0)
emission, 0.4deg away from the pulsar PSR J2229+6114, situated at the northern
end of the SNR. Evidently the current-epoch particles from the pulsar wind
nebula are not participating in the gamma-ray production. The VHE energy
spectrum measured with VERITAS is well characterized by a power law dN/dE =
N_0(E/3 TeV)^{-G} with a differential index of G = 2.29 +/- 0.33stat +/-
0.30sys and a flux of N_0 = (1.15 +/- 0.27stat +/- 0.35sys)x 10^{-13} cm^{-2}
s^{-1} TeV^{-1}. The integral flux above 1 TeV corresponds to ~5 percent of the
steady Crab Nebula emission above the same energy. We describe the observations
and analysis of the object and briefly discuss the implications of the
detection in a multiwavelength context.Comment: 5 pages, 2 figure
A Search for Very High-Energy Gamma Rays from the Missing Link Binary Pulsar J1023+0038 with VERITAS
The binary millisecond radio pulsar PSR J1023+0038 exhibits many
characteristics similar to the gamma-ray binary system PSR B1259--63/LS 2883,
making it an ideal candidate for the study of high-energy non-thermal emission.
It has been the subject of multi-wavelength campaigns following the
disappearance of the pulsed radio emission in 2013 June, which revealed the
appearance of an accretion disk around the neutron star. We present the results
of very high-energy gamma-ray observations carried out by VERITAS before and
after this change of state. Searches for steady and pulsed emission of both
data sets yield no significant gamma-ray signal above 100 GeV, and upper limits
are given for both a steady and pulsed gamma-ray flux. These upper limits are
used to constrain the magnetic field strength in the shock region of the PSR
J1023+0038 system. Assuming that very high-energy gamma rays are produced via
an inverse-Compton mechanism in the shock region, we constrain the shock
magnetic field to be greater than 2 G before the disappearance of the
radio pulsar and greater than 10 G afterwards.Comment: 7 pages, 3 figures, accepted for publication in Ap
VERITAS Upper Limit on the VHE Emission from the Radio Galaxy NGC 1275
The recent detection by the Fermi gamma-ray space telescope of high-energy
gamma-rays from the radio galaxy NGC 1275 makes the observation of the very
high energy (VHE: E > 100 GeV) part of its broadband spectrum particularly
interesting, especially for the understanding of active galactic nuclei (AGN)
with misaligned multi-structured jets. The radio galaxy NGC 1275 was recently
observed by VERITAS at energies above 100 GeV for about 8 hours. No VHE
gamma-ray emission was detected by VERITAS from NGC 1275. A 99% confidence
level upper limit of 2.1% of the Crab Nebula flux level is obtained at the
decorrelation energy of approximately 340 GeV, corresponding to 19% of the
power-law extrapolation of the Fermi Large Area Telescope (LAT) result.Comment: Accepted for publication in ApJ Letter
VERITAS and Multiwavelength Observations of the BL Lacertae Object 1ES 1741+196
We present results from multiwavelength observations of the BL Lacertae
object 1ES 1741+196, including results in the very-high-energy -ray
regime using the Very Energetic Radiation Imaging Telescope Array System
(VERITAS). The VERITAS time-averaged spectrum, measured above 180 GeV, is
well-modelled by a power law with a spectral index of
. The integral flux above 180
GeV is
m s, corresponding to 1.6% of the Crab Nebula flux on average.
The multiwavelength spectral energy distribution of the source suggests that
1ES 1741+196 is an extreme-high-frequency-peaked BL Lacertae object. The
observations analysed in this paper extend over a period of six years, during
which time no strong flares were observed in any band. This analysis is
therefore one of the few characterizations of a blazar in a non-flaring state.Comment: 8 pages, 5 figures. Accepted for publication in MNRA
- …