11 research outputs found

    The K-theory of free quantum groups

    Get PDF
    In this paper we study the K -theory of free quantum groups in the sense of Wang and Van Daele, more precisely, of free products of free unitary and free orthogonal quantum groups. We show that these quantum groups are K -amenable and establish an analogue of the Pimsner–Voiculescu exact sequence. As a consequence, we obtain in particular an explicit computation of the K -theory of free quantum groups. Our approach relies on a generalization of methods from the Baum–Connes conjecture to the framework of discrete quantum groups. This is based on the categorical reformulation of the Baum–Connes conjecture developed by Meyer and Nest. As a main result we show that free quantum groups have a γ -element and that γ=1 . As an important ingredient in the proof we adapt the Dirac-dual Dirac method for groups acting on trees to the quantum case. We use this to extend some permanence properties of the Baum–Connes conjecture to our setting

    Property (RD) for Hecke pairs

    Full text link
    As the first step towards developing noncommutative geometry over Hecke C*-algebras, we study property (RD) (Rapid Decay) for Hecke pairs. When the subgroup H in a Hecke pair (G,H) is finite, we show that the Hecke pair (G,H) has (RD) if and only if G has (RD). This provides us with a family of examples of Hecke pairs with property (RD). We also adapt Paul Jolissant's works in 1989 to the setting of Hecke C*-algebras and show that when a Hecke pair (G,H) has property (RD), the algebra of rapidly decreasing functions on the set of double cosets is closed under holomorphic functional calculus of the associated (reduced) Hecke C*-algebra. Hence they have the same K_0-groups.Comment: A short note added explaining other methods to prove that the subalgebra of rapidly decreasing functions is smooth. This is the final version as published. The published version is available at: springer.co

    Quantum Symmetries and Strong Haagerup Inequalities

    Full text link
    In this paper, we consider families of operators {xr}r∈Λ\{x_r\}_{r \in \Lambda} in a tracial C∗^\ast-probability space (A,ϕ)(\mathcal A, \phi), whose joint ∗\ast-distribution is invariant under free complexification and the action of the hyperoctahedral quantum groups {Hn+}n∈N\{H_n^+\}_{n \in \N}. We prove a strong form of Haagerup's inequality for the non-self-adjoint operator algebra B\mathcal B generated by {xr}r∈Λ\{x_r\}_{r \in \Lambda}, which generalizes the strong Haagerup inequalities for ∗\ast-free R-diagonal families obtained by Kemp-Speicher \cite{KeSp}. As an application of our result, we show that B\mathcal B always has the metric approximation property (MAP). We also apply our techniques to study the reduced C∗^\ast-algebra of the free unitary quantum group Un+U_n^+. We show that the non-self-adjoint subalgebra Bn\mathcal B_n generated by the matrix elements of the fundamental corepresentation of Un+U_n^+ has the MAP. Additionally, we prove a strong Haagerup inequality for Bn\mathcal B_n, which improves on the estimates given by Vergnioux's property RD \cite{Ve}

    Operator algebras in India in the past decade

    No full text
    corecore