143 research outputs found

    On a Recent Construction of "Vacuum-like" Quantum Field States in Curved Spacetime

    Full text link
    Afshordi, Aslanbeigi and Sorkin have recently proposed a construction of a distinguished "S-J state" for scalar field theory in (bounded regions of) general curved spacetimes. We establish rigorously that the proposal is well-defined on globally hyperbolic spacetimes or spacetime regions that can be embedded as relatively compact subsets of other globally hyperbolic spacetimes, and also show that, whenever the proposal is well-defined, it yields a pure quasifree state. However, by explicitly considering portions of ultrastatic spacetimes, we show that the S-J state is not in general a Hadamard state. In the specific case where the Cauchy surface is a round 3-sphere, we prove that the representation induced by the S-J state is generally not unitarily equivalent to that of a Hadamard state, and indeed that the representations induced by S-J states on nested regions of the ultrastatic spacetime also fail to be unitarily equivalent in general. The implications of these results are discussed.Comment: 25pp, LaTeX. v2 References added, typos corrected. To appear in Class Quantum Gravit

    Cosmological particle creation in states of low energy

    Full text link
    The recently proposed states of low energy provide a well-motivated class of reference states for the quantized linear scalar field on cosmological Friedmann-Robertson-Walker spacetimes. The low energy property of a state is localized close to some value of the cosmological time coordinate. We present calculations of the relative cosmological particle production between a state of low energy at early time and another such state at later time. In an exponentially expanding Universe, we find that the particle production shows oscillations in the spatial frequency modes. The basis of the method for calculating the relative particle production is completely rigorous. Approximations are only used at the level of numerical calculation.Comment: 24 pages, 7 figure

    Charged sectors, spin and statistics in quantum field theory on curved spacetimes

    Full text link
    The first part of this paper extends the Doplicher-Haag-Roberts theory of superselection sectors to quantum field theory on arbitrary globally hyperbolic spacetimes. The statistics of a superselection sector may be defined as in flat spacetime and each charge has a conjugate charge when the spacetime possesses non-compact Cauchy surfaces. In this case, the field net and the gauge group can be constructed as in Minkowski spacetime. The second part of this paper derives spin-statistics theorems on spacetimes with appropriate symmetries. Two situations are considered: First, if the spacetime has a bifurcate Killing horizon, as is the case in the presence of black holes, then restricting the observables to the Killing horizon together with "modular covariance" for the Killing flow yields a conformally covariant quantum field theory on the circle and a conformal spin-statistics theorem for charged sectors localizable on the Killing horizon. Secondly, if the spacetime has a rotation and PT symmetry like the Schwarzschild-Kruskal black holes, "geometric modular action" of the rotational symmetry leads to a spin-statistics theorem for charged covariant sectors where the spin is defined via the SU(2)-covering of the spatial rotation group SO(3).Comment: latex2e, 73 page

    Scaling Algebras and Renormalization Group in Algebraic Quantum Field Theory; 2, Instructive Examples

    Get PDF
    The concept of scaling algebra provides a novel framework for the general structural analysis and classification of the short distance properties of algebras of local observables in relativistic quantum field theory. In the present article this method is applied to the simple example of massive free field theory in s = 1,2 and 3 spatial dimensions. Not quite unexpectedly, one obtains for s = 2,3 in the scaling (short distance) limit the algebra of local observables in massless free field theory. The case s =1 offers, however, some surprises. There the algebra of observables acquires in the scaling limit a non-trivial center and describes charged physical states satisfying Gauss' law. The latter result is of relevance for the interpretation of the Schwinger model at short distances and illustrates the conceptual and computational virtues of the method

    Continuity of symplectically adjoint maps and the algebraic structure of Hadamard vacuum representations for quantum fields on curved spacetime

    Full text link
    We derive for a pair of operators on a symplectic space which are adjoints of each other with respect to the symplectic form (that is, they are sympletically adjoint) that, if they are bounded for some scalar product on the symplectic space dominating the symplectic form, then they are bounded with respect to a one-parametric family of scalar products canonically associated with the initially given one, among them being its ``purification''. As a typical example we consider a scalar field on a globally hyperbolic spacetime governed by the Klein-Gordon equation; the classical system is described by a symplectic space and the temporal evolution by symplectomorphisms (which are symplectically adjoint to their inverses). A natural scalar product is that inducing the classical energy norm, and an application of the above result yields that its ``purification'' induces on the one-particle space of the quantized system a topology which coincides with that given by the two-point functions of quasifree Hadamard states. These findings will be shown to lead to new results concerning the structure of the local (von Neumann) observable-algebras in representations of quasifree Hadamard states of the Klein-Gordon field in an arbitrary globally hyperbolic spacetime, such as local definiteness, local primarity and Haag-duality (and also split- and type III_1-properties). A brief review of this circle of notions, as well as of properties of Hadamard states, forms part of the article.Comment: 42 pages, LaTeX. The Def. 3.3 was incomplete and this has been corrected. Several misprints have been removed. All results and proofs remain unchange

    Microlocal analysis of quantum fields on curved spacetimes: Analytic wavefront sets and Reeh-Schlieder theorems

    Full text link
    We show in this article that the Reeh-Schlieder property holds for states of quantum fields on real analytic spacetimes if they satisfy an analytic microlocal spectrum condition. This result holds in the setting of general quantum field theory, i.e. without assuming the quantum field to obey a specific equation of motion. Moreover, quasifree states of the Klein-Gordon field are further investigated in this work and the (analytic) microlocal spectrum condition is shown to be equivalent to simpler conditions. We also prove that any quasifree ground- or KMS-state of the Klein-Gordon field on a stationary real analytic spacetime fulfills the analytic microlocal spectrum condition.Comment: 31 pages, latex2

    Supersymmetric Field-Theoretic Models on a Supermanifold

    Get PDF
    We propose the extension of some structural aspects that have successfully been applied in the development of the theory of quantum fields propagating on a general spacetime manifold so as to include superfield models on a supermanifold. We only deal with the limited class of supermanifolds which admit the existence of a smooth body manifold structure. Our considerations are based on the Catenacci-Reina-Teofillatto-Bryant approach to supermanifolds. In particular, we show that the class of supermanifolds constructed by Bonora-Pasti-Tonin satisfies the criterions which guarantee that a supermanifold admits a Hausdorff body manifold. This construction is the closest to the physicist's intuitive view of superspace as a manifold with some anticommuting coordinates, where the odd sector is topologically trivial. The paper also contains a new construction of superdistributions and useful results on the wavefront set of such objects. Moreover, a generalization of the spectral condition is formulated using the notion of the wavefront set of superdistributions, which is equivalent to the requirement that all of the component fields satisfy, on the body manifold, a microlocal spectral condition proposed by Brunetti-Fredenhagen-K\"ohler.Comment: Final version to appear in J.Math.Phy

    The split property for locally covariant quantum field theories in curved spacetime

    Get PDF
    The split property expresses the way in which local regions of spacetime define subsystems of a quantum field theory. It is known to hold for general theories in Minkowski space under the hypothesis of nuclearity. Here, the split property is discussed for general locally covariant quantum field theories in arbitrary globally hyperbolic curved spacetimes, using a spacetime deformation argument to transport the split property from one spacetime to another. It is also shown how states obeying both the split and (partial) Reeh–Schlieder properties can be constructed, providing standard split inclusions of certain local von Neumann algebras. Sufficient conditions are given for the theory to admit such states in ultrastatic spacetimes, from which the general case follows. A number of consequences are described, including the existence of local generators for global gauge transformations, and the classification of certain local von Neumann algebras. Similar arguments are applied to the distal split property and circumstances are exhibited under which distal splitting implies the full split property

    Distillability and positivity of partial transposes in general quantum field systems

    Full text link
    Criteria for distillability, and the property of having a positive partial transpose, are introduced for states of general bipartite quantum systems. The framework is sufficiently general to include systems with an infinite number of degrees of freedom, including quantum fields. We show that a large number of states in relativistic quantum field theory, including the vacuum state and thermal equilibrium states, are distillable over subsystems separated by arbitrary spacelike distances. These results apply to any quantum field model. It will also be shown that these results can be generalized to quantum fields in curved spacetime, leading to the conclusion that there is a large number of quantum field states which are distillable over subsystems separated by an event horizon.Comment: 25 pages, 2 figures. v2: Typos removed, references and comments added. v3: Expanded introduction and reference list. To appear in Rev. Math. Phy

    Superselection Sectors and General Covariance.I

    Full text link
    This paper is devoted to the analysis of charged superselection sectors in the framework of the locally covariant quantum field theories. We shall analize sharply localizable charges, and use net-cohomology of J.E. Roberts as a main tool. We show that to any 4-dimensional globally hyperbolic spacetime it is attached a unique, up to equivalence, symmetric tensor \Crm^*-category with conjugates (in case of finite statistics); to any embedding between different spacetimes, the corresponding categories can be embedded, contravariantly, in such a way that all the charged quantum numbers of sectors are preserved. This entails that to any spacetime is associated a unique gauge group, up to isomorphisms, and that to any embedding between two spacetimes there corresponds a group morphism between the related gauge groups. This form of covariance between sectors also brings to light the issue whether local and global sectors are the same. We conjecture this holds that at least on simply connected spacetimes. It is argued that the possible failure might be related to the presence of topological charges. Our analysis seems to describe theories which have a well defined short-distance asymptotic behaviour.Comment: 66 page
    corecore