1,164 research outputs found

    Classical and quantum massive cosmology for the open FRW universe

    Full text link
    In an open Friedmann-Robertson-Walker (FRW) space background, we study the classical and quantum cosmological models in the framework of the recently proposed nonlinear massive gravity theory. Although the constraints which are present in this theory prevent it from admitting the flat and closed FRW models as its cosmological solutions, for the open FRW universe, it is not the case. We have shown that, either in the absence of matter or in the presence of a perfect fluid, the classical field equations of such a theory adopt physical solutions for the open FRW model, in which the mass term shows itself as a cosmological constant. These classical solutions consist of two distinguishable branches: One is a contacting universe which tends to a future singularity with zero size, while another is an expanding universe having a past singularity from which it begins its evolution. A classically forbidden region separates these two branches from each other. We then employ the familiar canonical quantization procedure in the given cosmological setting to find the cosmological wave functions. We use the resulting wave function to investigate the possibility of the avoidance of classical singularities due to quantum effects. It is shown that the quantum expectation values of the scale factor, although they have either contracting or expanding phases like their classical counterparts, are not disconnected from each other. Indeed, the classically forbidden region may be replaced by a bouncing period in which the scale factor bounces from the contraction to its expansion eras. Using the Bohmian approach of quantum mechanics, we also compute the Bohmian trajectory and the quantum potential related to the system, which their analysis shows are the direct effects of the mass term on the dynamics of the universe.Comment: 18 pages, 7 figures, typos corrected, refs. adde

    Cosmology with minimal length uncertainty relations

    Full text link
    We study the effects of the existence of a minimal observable length in the phase space of classical and quantum de Sitter (dS) and Anti de Sitter (AdS) cosmology. Since this length has been suggested in quantum gravity and string theory, its effects in the early universe might be expected. Adopting the existence of such a minimum length results in the Generalized Uncertainty Principle (GUP), which is a deformed Heisenberg algebra between minisuperspace variables and their momenta operators. We extend these deformed commutating relations to the corresponding deformed Poisson algebra in the classical limit. Using the resulting Poisson and Heisenberg relations, we then construct the classical and quantum cosmology of dS and Ads models in a canonical framework. We show that in classical dS cosmology this effect yields an inflationary universe in which the rate of expansion is larger than the usual dS universe. Also, for the AdS model it is shown that GUP might change the oscillatory nature of the corresponding cosmology. We also study the effects of GUP in quantized models through approximate analytical solutions of the Wheeler-DeWitt (WD) equation, in the limit of small scale factor for the universe, and compare the results with the ordinary quantum cosmology in each case.Comment: 11 pages, 4 figures, to appear in IJMP

    Study of the scientific potential of a three 40 cm Telescopes Interferometer at Dome C

    Get PDF
    Recent site testing (see: http://www-luan.unice.fr/Concordiastro/indexantartic.html) has shown that Dome C in Antarctica might have a high potential for stellar interferometry if some solutions related to the surface atmospheric layer are found. A demonstrator interferometer could be envisioned in order to fully qualify the site and prepare the future development of a large array. We analyse the performances of a prototype interferometer for Dome C made with 3 telescopes of 40 cm diameter. It assumes classical Michelson recombination. The most recent atmospheric and environmental conditions measured at Dome C are considered (see K. Agabi "First whole atmosphere night-time seeing measurements at Dome C, Antarctica"). We also study the possible science reachable with such a demonstrator. Especially we evaluate that even such small aperture interferometer could allow the detection and low resolution spectroscopy of the most favourable pegaside planets.Comment: 6 pages, 5 figures, conferences SPIE, 0rlando, 200

    Temporal intensity correlation of light scattered by a hot atomic vapor

    Get PDF
    We present temporal intensity correlation measurements of light scattered by a hot atomic vapor. Clear evidence of photon bunching is shown at very short time-scales (nanoseconds) imposed by the Doppler broadening of the hot vapor. Moreover, we demonstrate that relevant information about the scattering process, such as the ratio of single to multiple scattering, can be deduced from the measured intensity correlation function. These measurements confirm the interest of temporal intensity correlation to access non-trivial spectral features, with potential applications in astrophysics

    All-optical switching using a new photonic crystal directional coupler

    Get PDF
    In this paper all-optical switching in a new photonic crystal directional coupler is performed.  The structure of the switch consists of a directional coupler and a separate path for a control signal called “control waveguide”. In contrast to the former reported structures in which the directional couplers are made by removing a row of rods entirely, the directional coupler in our optical switch is constructed by two reduced-radius line-defect waveguides separated by the control waveguide. Furthermore, in our case the background material has the nonlinear Kerr property. Therefore, in the structure of this work, no frequency overlap occurs between the control waveguide mode and the directional coupler modes. It is shown that such a condition provides a very good isolation between the control and the probe signals at the output ports. In the control waveguide, nonlinear Kerr effect causes the required refractive index change by the presence of a high power control (pump) signal. Even and odd modes of the coupler are investigated by applying the distribution of the refractive index change in the nonlinear region of a super-cell so that a switching length of about 94 µm is obtained at the wavelength of 1.55 µm. Finally, all-optical switching of the 1.55 µm probe signal using a control signal at the wavelength of 1.3 µm, is simulated through the finite-difference time-domain method, where both signals are desirable in optical communication systems. A very high extinction ratio of 67 dB is achieved and the temporal characteristics of the switch are demonstrated

    Waist circumference and insulin resistance: a community based cross sectional study on reproductive aged Iranian women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although the positive relationship between insulin resistance (IR) and central obesity is well known, the direct relationship between waist circumference and IR is not clear yet and there is no consensus regarding the cut off value for waist circumference as a surrogate index for central obesity. The present study was aimed to determine the optimal cut-off value of waist circumference (WC) for predicting IR in reproductive aged Iranian women.</p> <p>Methods</p> <p>Using the stratified, multistage probability cluster sampling method 1036 women were randomly selected from among reproductive aged women of different geographic regions of Iran. Following implementation of exclusion criteria, complete data for 907 women remained for analysis. Insulin resistance was evaluated by the homeostasis model assessment (HOMA-IR) and its cut off value was defined as the 95th percentile of HOMA-IR value for 129 subjects, without any metabolic abnormality. The optimal cut-off of WC in relation to HOMA-IR was calculated based on the receiver operating characteristics (ROC) curve analysis using the Youden index and the area under curve (AUC).</p> <p>Results</p> <p>The mean age of the total sample of 907 subjects was 34.4 ± 7.6 years (range, 18 - 45 years). After adjustment for age the odds ratios (OR) of elevated HOMA-IR were progressively higher with increasing levels of waist circumference; the age adjusted OR of IR for women with WC > 95 cm in comparison to those subjects with WC < 80 cm, was 9.5 (95% CI 5.6-16.1). The optimal cutoff value for WC predicting IR was 88.5 cm; with a sensitivity and specificity of 71% and 64%, respectively.</p> <p>Conclusions</p> <p>Waist circumference is directly related to insulin resistance and the optimal cut-off value for waist circumference reflecting insulin resistance is considered to be 88.5 cm for reproductive aged Iranian women.</p

    Evolutionary quantum cosmology in a gauge-fixed picture

    Full text link
    We study the classical and quantum models of a flat Friedmann-Robertson-Walker (FRW) space-time, coupled to a perfect fluid, in the context of the consensus and a gauge-fixed Lagrangian frameworks. It is shown that, either in the usual or in the gauge-fixed actions, the evolution of the universe based on the classical cosmology represents a late time power law expansion, coming from a big-bang singularity in which the scale factor goes to zero for the standard matter, and tending towards a big-rip singularity in which the scale factor diverges for the phantom fluid. We then employ the familiar canonical quantization procedure in the given cosmological setting to find the cosmological wave functions in the corresponding minisuperspace. Using a gauge-fixed (reduced) Lagrangian, we show that, it may lead to a Schr\"{o}dinger equation for the quantum-mechanical description of the model under consideration, the eigenfunctions of which can be used to construct the time dependent wave function of the universe. We use the resulting wave function in order to investigate the possibility of the avoidance of classical singularities due to quantum effects by means of the many-worlds and ontological interpretation of quantum cosmology.Comment: 15 pages, 10 figures, typos corrected, Refs. adde

    Realization of an Interacting Two-Valley AlAs Bilayer System

    Full text link
    By using different widths for two AlAs quantum wells comprising a bilayer system, we force the X-point conduction-band electrons in the two layers to occupy valleys with different Fermi contours, electron effective masses, and g-factors. Since the occupied valleys are at different X-points of the Brillouin zone, the interlayer tunneling is negligibly small despite the close electron layer spacing. We demonstrate the realization of this system via magneto-transport measurements and the observation of a phase-coherent, bilayer ν\nu=1 quantum Hall state flanked by a reentrant insulating phase.Comment: 5 page
    corecore