15 research outputs found

    Perforin is activated by a proteolytic cleavage during biosynthesis which reveals a phospholipid-binding C2 domain.

    No full text
    Perforin is a secreted protein synthesized by activated cytotoxic T lymphocytes (CTL) and natural killer (NK) cells. It is a key component of the lytic machinery of these cells, being able to insert into the plasma membrane of targeted cells, forming a pore which leads to their destruction. Here we analyse the synthesis, processing and intracellular transport of perforin in the NK cell line YT. Perforin is synthesized as a 70 kDa inactive precursor which is cleaved at the C-terminus to yield a 60 kDa active form. This proteolytic cleavage occurs in an acidic compartment and can be inhibited by incubation of the cells in ammonium chloride, concanamycin A, leupeptin and E-64. The increased lytic activity of the cleaved form can be demonstrated by killing assays in which cleavage of the pro-piece is inhibited. Epitope mapping reveals that cleavage of the pro-piece occurs at the boundary of a C2 domain, which we show is able to bind phospholipid membranes in a calcium-dependent manner. We propose that removal of the pro-piece, which contains a bulky glycan, allows the C2 domain to interact with phospholipid membranes and initiate perforin pore formation

    Perforin activity at membranes leads to invaginations and vesicle formation

    No full text
    The cytotoxic cell granule secretory pathway is essential for immune defence. How the pore-forming protein perforin (PFN) facilitates the cytosolic delivery of granule-associated proteases (granzymes) remains enigmatic. Here we show that PFN is able to induce invaginations and formation of complete internal vesicles in giant unilamellar vesicles. Formation of internal vesicles depends on native PFN and calcium and antibody labeling shows the localization of PFN at the invaginations. This vesiculation is recapitulated in large unilamellar vesicles and in this case PFN oligomers can be seen associated with the necks of the invaginations. Capacitance measurements show PFN is able to increase a planar lipid membrane surface area in the absence of pore formation, in agreement with the ability to induce invaginations. Finally, addition of PFN to Jurkat cells causes the formation of internal vesicles prior to pore formation. PFN is capable of triggering an endocytosis-like event in addition to pore formation, suggesting a new paradigm for its role in delivering apoptosis-inducing granzymes into target cells

    Adaptor protein 3-dependent microtubule-mediated movement of lytic granules to the immunological synapse

    No full text
    Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive disease characterized by platelet defects and oculocutaneous albinism. Individuals with HPS type 2 (HPS2) lack the cytosolic adaptor protein 3 (AP-3) involved in lysosomal sorting, and are also immunodeficient. Here we characterize an HPS2 mutation and demonstrate that AP-3 deficiency leads to a loss of cytotoxic T lymphocyte (CTL)-mediated cytotoxicity. Although the lysosomal protein CD63 was mislocalized to the plasma membrane, perforin and granzymes were correctly localized to the lytic granules in AP-3-deficient CTLs. However, the lytic granules of AP-3-deficient CTLs were enlarged and were unable to move along microtubules and dock within the secretory domain of the immunological synapse. These data show that AP-3 is essential for polarized secretion from CTLs
    corecore