107 research outputs found

    New forming method of manufacturing cylindrical parts with nano/ultrafine grained structures by power spinning based on small plastic strains

    Get PDF
    A new spinning method to manufacture the cylindrical parts with nano/ultrafine grained structures is proposed, which consists of quenching, power spinning and recrystallization annealing. The microstructural evolution during the different process stages and macroforming quality of the spun parts made of ASTM 1020 steel are investigated. The results show that the microstructures of the ferrites and pearlites in the ASTM 1020 steel are transformed to the lath martensites after quenching. The martensite laths obtained by quenching are refined to 87 nm and a small amount of nanoscale deformation twins with an average thickness of 20 nm is generated after performing a 3-pass stagger spinning with 55% thinning ratio of wall thickness, where the equivalent strain required is only 0.92. The equiaxial ferritic grains with an average size of 160 nm and nano-carbides are generated by subsequent recrystallization annealing at 480°C for 30 min. The spun parts with high dimensional precision and low surface roughness are obtained by the forming method developed in this work, combining quenching with 3-pass stagger spinning and recrystallization annealing

    Phase Stability Effects on Hydrogen Embrittlement Resistance in Martensite–Reverted Austenite Steels

    Get PDF
    Earlier studies have shown that interlath austenite in martensitic steels can enhance hydrogen embrittlement (HE) resistance. However, the improvements were limited due to microcrack nucleation and growth. A novel microstructural design approach is investigated, based on enhancing austenite stability to reduce crack nucleation and growth. Our findings from mechanical tests, X-ray diffraction, and scanning electron microscopy reveal that this strategy is successful. However, the improvements are limited due to intrinsic microstructural heterogeneity effects

    Evolution of Microstructure and Texture during Severe Cold Rolling and Annealing Of Al-2.5%Mg and Al-2.5%Mg-0.2%Sc Alloys

    No full text
    Evolution of microstructure and texture in Al-2.5%Mg and Al- 2.5%Mg-0.2%Sc alloys during severe cold rolling and subsequent annealing was studied using electron back scatter diffraction (EBSD). These alloys were first thermo-mechanically processed to sheets of average thickness (~lmm) with well recrystallized microstructures. These sheets were subsequently severely cold- rolled up to an equivalent strain of 4.32 using a combination of Accumulative Roll Bonding and conventional cold-rolling. The deformed alloys were subjected to isochronal annealing treatment for one hour in a wide temperature range. Development of Ultrafine lamellar microstructure subdivided by high angle grain boundaries (HAGB) and pure metal or copper type texture was observed in both the alloys during deformation. Al-Mg-Sc consistently showed higher hardness as compared to the Al-Mg. Al-Mg recrystallized around ~ 2500C but in Al-Mg-Sc the recrystallization was greatly delayed up to 500°C and the deformation texture components were retained during annealing. The differences in the recrystallization behavior of two materials were discussed with regard to the deformation microstructure and presence of fine precipitate
    corecore