67 research outputs found

    Predominant Functional Expression of Kv1.3 by Activated Microglia of the Hippocampus after Status epilepticus

    Get PDF
    BACKGROUND:Growing evidence indicates that the functional state of microglial cells differs according to the pathological conditions that trigger their activation. In particular, activated microglial cells can express sets of Kv subunits which sustain delayed rectifying potassium currents (Kdr) and modulate differently microglia proliferation and ability to release mediators. We recently reported that hippocampal microglia is in a particular activation state after a status epilepticus (SE) and the present study aimed at identifying which of the Kv channels are functionally expressed by microglia in this model. METHODOLOGY/PRINCIPAL FINDINGS:SE was induced by systemic injection of kainate in CX3CR1(eGFP/+) mice and whole cell recordings of fluorescent microglia were performed in acute hippocampal slices prepared 48 h after SE. Microglia expressed Kdr currents which were characterized by a potential of half-maximal activation near -25 mV, prominent steady-state and cumulative inactivations. Kdr currents were almost abolished by the broad spectrum antagonist 4-Aminopyridine (1 mM). In contrast, tetraethylammonium (TEA) at a concentration of 1 mM, known to block Kv3.1, Kv1.1 and 1.2 subunits, only weakly reduced Kdr currents. However, at a concentration of 5 mM which should also affect Kv1.3 and 1.6, TEA inhibited about 30% of the Kdr conductance. Alpha-dendrotoxin, which selectively inhibits Kv1.1, 1.2 and 1.6, reduced only weakly Kdr currents, indicating that channels formed by homomeric assemblies of these subunits are not important contributors of Kdr currents. Finally, agitoxin-2 and margatoxin strongly inhibited the current. CONCLUSIONS/SIGNIFICANCE:These results indicate that Kv1.3 containing channels predominantly determined Kdr currents in activated microglia after SE

    Mutation frequency in human oocytes

    No full text

    A Better Magnetic Stir Bar Retriever

    No full text

    Der Einfluss objektorientierter Organisationsformen auf die Gestaltung absatzpolitischer Entscheidungsprozesse

    No full text
    SIGLEBibliothek Weltwirtschaft Kiel C124,231 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman

    Hypothalamic neuropeptide S receptor blockade decreases discriminative cue-induced reinstatement of cocaine seeking in the rat

    No full text
    Rationale Previous studies have shown that activation of brain neuropeptide S receptor (NPSR) facilitates reinstatement of cocaine seeking elicited by environmental cues predictive of drug availability. This finding suggests the possibility that blockade of NPSR receptors may be of therapeutic benefit in cocaine addiction. To evaluate this hypothesis, we investigated the effect of two newly synthetized NPSR antagonists, namely the quinolinone-amide derivative NPSR-QA1 and the NPS peptidic analogue [D-Cys(tBu)5]NPS on cocaine self-administration and on discriminative cue-induced relapse to cocaine seeking in the rat. Methods Separate groups of rats self-administered food and cocaine 0.25 mg/kg/inf in FR1 and FR5 (fixed ratio reinforcement schedules) for 30-min and 2-h sessions per day. After food and cocaine intake reached baseline levels, the effect of NPSR-QA1 was tested on cocaine and food self-administration. The NPSR-QA1 was injected intraperitoneally and its effect on discriminative cue-induced reinstatement was evaluated, while [D-Cys(tBut)5]NPS was injected intracranially, intra-lateral hypothalamus, intra-perifornical area of the hypothalamus, and intra-central amygdala. The effect of the NPSR-QA1 on extinction of cocaine seeking was also assessed. Results Intraperitoneal administration of NPSR-QA1 (15\u201330 mg/kg) did not affect cocaine self-administration. Conversely, NPSR-QA1 (15\u201330 mg/kg) decreased discriminative cue-induced cocaine relapse. At the lowest dose, this effect was specific, while at the highest dose, NPSR-QA1 also reduced food self-administration. The efficacy of NPSR antagonism on cocaine seeking was confirmed with [D-Cys(tBu)5]NPS (10\u201330 nmol/rat) as it markedly inhibited relapse behavior following site-specific injection into the lateral hypothalamus and the perifornical area of the hypothalamus but not into the central amygdala. Conclusions The identification of the NPS/NPSR system as an important new element involved in the physiopathology of cocaine addiction and the discovery of the anti-addictive properties of NPSR antagonists opens the possibility of exploring a new mechanism for cocaine addiction treatment

    Hypothalamic Neuropeptide S receptor blockade decreases discriminative cue-induced reinstatement of cocaine seeking in the rat

    No full text
    RATIONALE: Previous studies have shown that activation of brain neuropeptide S receptor (NPSR) facilitates reinstatement of cocaine seeking elicited by environmental cues predictive of drug availability. This finding suggests the possibility that blockade of NPSR receptors may be of therapeutic benefit in cocaine addiction. To evaluate this hypothesis, we investigated the effect of two newly synthetized NPSR antagonists, namely the quinolinone-amide derivative NPSR-QA1 and the NPS peptidic analogue [D-Cys(tBu)(5)]NPS on cocaine self-administration and on discriminative cue-induced relapse to cocaine seeking in the rat. METHODS: Separate groups of rats self-administered food and cocaine 0.25 mg/kg/inf in FR1 and FR5 (fixed ratio reinforcement schedules) for 30-min and 2-h sessions per day. After food and cocaine intake reached baseline levels, the effect of NPSR-QA1 was tested on cocaine and food self-administration. The NPSR-QA1 was injected intraperitoneally and its effect on discriminative cue-induced reinstatement was evaluated, while [D-Cys(tBut)(5)]NPS was injected intracranially, intra-lateral hypothalamus, intra-perifornical area of the hypothalamus, and intra-central amygdala. The effect of the NPSR-QA1 on extinction of cocaine seeking was also assessed. RESULTS: Intraperitoneal administration of NPSR-QA1 (15-30 mg/kg) did not affect cocaine self-administration. Conversely, NPSR-QA1 (15-30 mg/kg) decreased discriminative cue-induced cocaine relapse. At the lowest dose, this effect was specific, while at the highest dose, NPSR-QA1 also reduced food self-administration. The efficacy of NPSR antagonism on cocaine seeking was confirmed with [D-Cys(tBu)(5)]NPS (10-30 nmol/rat) as it markedly inhibited relapse behavior following site-specific injection into the lateral hypothalamus and the perifornical area of the hypothalamus but not into the central amygdala. CONCLUSIONS: The identification of the NPS/NPSR system as an important new element involved in the physiopathology of cocaine addiction and the discovery of the anti-addictive properties of NPSR antagonists opens the possibility of exploring a new mechanism for cocaine addiction treatment
    • …
    corecore