15 research outputs found

    Analysis of clinically relevant variants from ancestrally diverse Asian genomes

    Get PDF
    Asian populations are under-represented in human genomics research. Here, we characterize clinically significant genetic variation in 9051 genomes representing East Asian, South Asian, and severely under-represented Austronesian-speaking Southeast Asian ancestries. We observe disparate genetic risk burden attributable to ancestry-specific recurrent variants and identify individuals with variants specific to ancestries discordant to their self-reported ethnicity, mostly due to cryptic admixture. About 27% of severe recessive disorder genes with appreciable carrier frequencies in Asians are missed by carrier screening panels, and we estimate 0.5% Asian couples at-risk of having an affected child. Prevalence of medically-actionable variant carriers is 3.4% and a further 1.6% harbour variants with potential for pathogenic classification upon additional clinical/experimental evidence. We profile 23 pharmacogenes with high-confidence gene-drug associations and find 22.4% of Asians at-risk of Centers for Disease Control and Prevention Tier 1 genetic conditions concurrently harbour pharmacogenetic variants with actionable phenotypes, highlighting the benefits of pre-emptive pharmacogenomics. Our findings illuminate the diversity in genetic disease epidemiology and opportunities for precision medicine for a large, diverse Asian population

    Whole genome DNA methylation: Beyond genes silencing

    No full text
    10.18632/oncotarget.13562Oncotarget835629-563

    BRD4 localization to lineage-specific enhancers is associated with a distinct transcription factor repertoire

    No full text
    Proper temporal epigenetic regulation of gene expression is essential for cell fate determination and tissue development. The Bromodomain-containing Protein-4 (BRD4) was previously shown to control the transcription of defined subsets of genes in various cell systems. In this study we examined the role of BRD4 in promoting lineage-specific gene expression and show that BRD4 is essential for osteoblast differentiation. Genome-wide analyses demonstrate that BRD4 is recruited to the transcriptional start site of differentiation-induced genes. Unexpectedly, while promoter-proximal BRD4 occupancy correlated with gene expression, genes which displayed moderate expression and promoter-proximal BRD4 occupancy were most highly regulated and sensitive to BRD4 inhibition. Therefore, we examined distal BRD4 occupancy and uncovered a specific co-localization of BRD4 with the transcription factors C/EBPb, TEAD1, FOSL2 and JUND at putative osteoblast-specific enhancers. These findings reveal the intricacies of lineage specification and provide new insight into the context-dependent functions of BRD4

    BRD4 localization to lineage-specific enhancers is associated with a distinct transcription factor repertoire

    No full text
    Proper temporal epigenetic regulation of gene expression is essential for cell fate determination and tissue development. The Bromodomain-containing Protein-4 (BRD4) was previously shown to control the transcription of defined subsets of genes in various cell systems. In this study we examined the role of BRD4 in promoting lineage-specific gene expression and show that BRD4 is essential for osteoblast differentiation. Genome-wide analyses demonstrate that BRD4 is recruited to the transcriptional start site of differentiation-induced genes. Unexpectedly, while promoter-proximal BRD4 occupancy correlated with gene expression, genes which displayed moderate expression and promoter-proximal BRD4 occupancy were most highly regulated and sensitive to BRD4 inhibition. Therefore, we examined distal BRD4 occupancy and uncovered a specific co-localization of BRD4 with the transcription factors C/EBPb, TEAD1, FOSL2 and JUND at putative osteoblast-specific enhancers. These findings reveal the intricacies of lineage specification and provide new insight into the context-dependent functions of BRD4

    TIP60 represses activation of endogenous retroviral elements

    No full text
    10.1093/nar/gky659Nucleic Acids Research46189456-947

    BRD4 localization to lineage-specific enhancers is associated with a distinct transcription factor repertoire

    No full text
    Proper temporal epigenetic regulation of gene expression is essential for cell fate determination and tissue development. The Bromodomain-containing Protein-4 (BRD4) was previously shown to control the transcription of defined subsets of genes in various cell systems. In this study we examined the role of BRD4 in promoting lineage-specific gene expression and show that BRD4 is essential for osteoblast differentiation. Genome-wide analyses demonstrate that BRD4 is recruited to the transcriptional start site of differentiation-induced genes. Unexpectedly, while promoter-proximal BRD4 occupancy correlated with gene expression, genes which displayed moderate expression and promoter-proximal BRD4 occupancy were most highly regulated and sensitive to BRD4 inhibition. Therefore, we examined distal BRD4 occupancy and uncovered a specific co-localization of BRD4 with the transcription factors C/EBPb, TEAD1, FOSL2 and JUND at putative osteoblast-specific enhancers. These findings reveal the intricacies of lineage specification and provide new insight into the context-dependent functions of BRD4
    corecore