617 research outputs found

    Structure and Composition of Old-Growth and Unmanaged Second-Growth Riparian Forests at Redwood National Park, USA

    Get PDF
    Restoration of second-growth riparian stands has become an important issue for managers of redwood (Sequoia sempervirens [D. Don] Endl.) forest reserves. Identifying differences between old-growth and second-growth forest vegetation is a necessary step in evaluating restoration needs and targets. The objective of this study was to characterize and contrast vegetation structure and composition in old-growth and unmanaged second-growth riparian forests in adjacent, geomorphologically similar watersheds at Redwood National Park. In the old-growth, redwood was the dominant overstory species in terms of stem density, basal area, and importance values. Second-growth was dominated by red alder (Alnus rubra Bong.), Douglas-fir (Pseudotsuga menziesii [Mirbel] Franco), and redwood. Understory species were similar in both forests, with several key differences: Oxalis oregana Nutt. and Trillium ovatum Pursh had greater importance values in the old-growth, and Vaccinium parvifolium Sm., Dryopteris spp. and sedges Carex spp. had greater importance values in the second-growth. Notable differences in structure and composition suggest that restoration practices such as thinning could expedite the acquisition of old-growth characteristics in second-growth riparian forests

    Scattering functions of knotted ring polymers

    Full text link
    We discuss the scattering function of a Gaussian random polygon with N nodes under a given topological constraint through simulation. We obtain the Kratky plot of a Gaussian polygon of N=200 having a fixed knot for some different knots such as the trivial, trefoil and figure-eight knots. We find that some characteristic properties of the different Kratky plots are consistent with the distinct values of the mean square radius of gyration for Gaussian polygons with the different knots.Comment: 4pages, 3figures, 3table

    Cytochromec−Crown Ether Complexes as Supramolecular Catalysts: Cold-Active Synzymes for Asymmetric Sulfoxide Oxidation in Methanol

    Get PDF
    A series of supramolecular complexes of various cytochrome c proteins with 18-crown-6 derivatives behave as cold-active synzymes in the H_2O_2 oxidation of racemic sulfoxides. This interesting behavior contrasts with native functionality, where the employed proteins act as electron transfer carriers. ESI-MS, UV, CD, and Raman spectroscopic characterizations reveal that four or five 18-crown-6 molecules strongly bind to the surface of the cytochrome c and also that nonnatural low-spin hexacoordinate heme structures are induced in methanol. Significantly, crown ether complexation can convert catalytically inactive biological forms to catalytically active artificial forms. Horse heart, pigeon breast, and yeast cytochromes c all stereoselectively oxidize (S)-isomers of methyl tolyl sulfoxide and related sulfoxides upon crown ether complexation. These supramolecular catalysts show the highest efficiency and enantiomer selectivity at −40 °C in the H_2O_2-dependent sulfoxide oxidation, while oxidative decomposition of the heme moieties predominantly occurs at room temperature. The oxidation reactivity of the employed sulfoxides is apparently related to steric constraints and electrochemical oxidation potentials of their S O bonds. Among the cytochrome c complexes, yeast cytochrome c demonstrates the lowest catalytic activity and degradation reactivity. It has a significantly different protein sequence, suggesting that crown ether complexation effectively activates heme coordination but may additionally alter the native backbone structure. The proper combination of cytochrome c proteins, 18-crown-6 receptors, and external circumstances can be used to successfully generate “protein-based supramolecular catalysts” exhibiting nonbiological reactivities

    Monorail/Foxa2 regulates floorplate differentiation and specification of oligodendrocytes, serotonergic raphe neurones and cranial motoneurones

    Get PDF
    In this study, we elucidate the roles of the winged-helix transcription factor Foxa2 in ventral CNS development in zebrafish. Through cloning of monorail (mol), which we find encodes the transcription factor Foxa2, and phenotypic analysis of mol(-/-) embryos, we show that floorplate is induced in the absence of Foxa2 function but fails to further differentiate. In mol(-/-) mutants, expression of Foxa and Hh family genes is not maintained in floorplate cells and lateral expansion of the floorplate fails to occur. Our results suggest that this is due to defects both in the regulation of Hh activity in medial floorplate cells as well as cell-autonomous requirements for Foxa2 in the prospective laterally positioned floorplate cells themselves. Foxa2 is also required for induction and/or patterning of several distinct cell types in the ventral CNS. Serotonergic neurones of the raphe nucleus and the trochlear motor nucleus are absent in mol(-/-) embryos, and oculomotor and facial motoneurones ectopically occupy ventral CNS midline positions in the midbrain and hindbrain. There is also a severe reduction of prospective oligodendrocytes in the midbrain and hindbrain. Finally, in the absence of Foxa2, at least two likely Hh pathway target genes are ectopically expressed in more dorsal regions of the midbrain and hindbrain ventricular neuroepithelium, raising the possibility that Foxa2 activity may normally be required to limit the range of action of secreted Hh proteins

    Polymers pushing Polymers: Polymer Mixtures in Thermodynamic Equilibrium with a Pore

    Get PDF
    We investigate polymer partitioning from polymer mixtures into nanometer size cavities by formulating an equation of state for a binary polymer mixture assuming that only one (smaller) of the two polymer components can penetrate the cavity. Deriving the partitioning equilibrium equations and solving them numerically allows us to introduce the concept of "polymers-pushing-polymers" for the action of non-penetrating polymers on the partitioning of the penetrating polymers. Polymer partitioning into a pore even within a very simple model of a binary polymer mixture is shown to depend in a complicated way on the composition of the polymer mixture and/or the pore-penetration penalty. This can lead to enhanced as well as diminished partitioning, due to two separate energy scales that we analyse in detail.Comment: 10 pages, 6 figure

    Spins in few-electron quantum dots

    Full text link
    This review describes the physics of spins in quantum dots containing one or two electrons, from an experimentalist's viewpoint. Various methods for extracting spin properties from experiment are presented, restricted exclusively to electrical measurements. Furthermore, experimental techniques are discussed that allow for: (1) the rotation of an electron spin into a superposition of up and down, (2) the measurement of the quantum state of an individual spin and (3) the control of the interaction between two neighbouring spins by the Heisenberg exchange interaction. Finally, the physics of the relevant relaxation and dephasing mechanisms is reviewed and experimental results are compared with theories for spin-orbit and hyperfine interactions. All these subjects are directly relevant for the fields of quantum information processing and spintronics with single spins (i.e. single-spintronics).Comment: final version (52 pages, 49 figures), Rev. Mod. Phy

    Polymer depletion interaction between two parallel repulsive walls

    Get PDF
    The depletion interaction between two parallel repulsive walls confining a dilute solution of long and flexible polymer chains is studied by field-theoretic methods. Special attention is paid to self-avoidance between chain monomers relevant for polymers in a good solvent. Our direct approach avoids the mapping of the actual polymer chains on effective hard or soft spheres. We compare our results with recent Monte Carlo simulations [A. Milchev and K. Binder, Eur. Phys. J. B 3, 477 (1998)] and with experimental results for the depletion interaction between a spherical colloidal particle and a planar wall in a dilute solution of nonionic polymers [D. Rudhardt, C. Bechinger, and P. Leiderer, Phys. Rev. Lett. 81, 1330 (1998)].Comment: 17 pages, 3 figures. Final version as publishe
    corecore