6,550 research outputs found
Spin-Wave Spectrum in `Single-Domain' Magnetic Ground State of Triangular Lattice Antiferromagnet CuFeO2
By means of neutron scattering measurements, we have investigated spin-wave
excitation in a collinear four-sublattice (4SL) magnetic ground state of a
triangular lattice antiferromagnet CuFeO2, which has been of recent interest as
a strongly frustrated magnet, a spin-lattice coupled system and a multiferroic.
To avoid mixing of spin-wave spectrum from magnetic domains having three
different orientations reflecting trigonal symmetry of the crystal structure,
we have applied uniaxial pressure on [1-10] direction of a single crystal
CuFeO2. By elastic neutron scattering measurements, we have found that only 10
MPa of the uniaxial pressure results in almost 'single domain' state in the 4SL
phase. We have thus performed inelastic neutron scattering measurements using
the single domain sample, and have identified two distinct spin- wave branches.
The dispersion relation of the upper spin-wave branch cannot be explained by
the previous theoretical model [R. S. Fishman: J. Appl. Phys. 103 (2008)
07B109]. This implies the importance of the lattice degree of freedom in the
spin-wave excitation in this system, because the previous calculation neglected
the effect of the spin-driven lattice distortion in the 4SL phase. We have also
discussed relationship between the present results and the recently discovered
"electromagnon" excitation.Comment: 5 pages, 3 figures, accepted for publication in J. Phys. Soc. Jp
Near-infrared emission-line galaxies in the Hubble Deep Field North
We present the 2.12~m narrow-band image of the Hubble Deep Field North
taken with the near-infrared camera (CISCO) on the Subaru telescope. Among five
targets whose H or [O~{\sc iii}] emission lines are redshifted into our
narrow-band range expected from their spectroscopic redshift, four of them have
strong emission lines, especially for the two [O~{\sc iii}] emission-line
objects. The remaining one target shows no H emission in spite of its
bright rest-UV luminosity, indicating that this object is already under the
post-starburst phase. The volume-averaged derived from the detected two
H emission is roughly consistent with that evaluated from the rest-UV
continuum.Comment: 12 pages, 7 figures. Accepted for publication in PASJ(2000
Infrared Imaging of the Gravitational Lens PG 1115+080 with the Subaru Telescope
We present high spatial resolution images of the gravitational-lens system PG
1115+080 taken with the near-infrared camera (CISCO) on the Subaru telescope.
The FWHM of the combined image is in the -band, yielding spatial
resolution of after a deconvolution procedure. This is a first
detection of an extended emission adjacent to the A1/A2 components, indicating
the presence of a fairly bright emission region with a characteristic angular
radius of 5 mas (40 pc). The near-infrared image of the Einstein ring
was extracted in both the and bands. The color is found to be
significantly redder than that of a synthetic model galaxy with an age of 3
Gyr, the age of the universe at the quasar redshift.Comment: 11 pages, 6 figures. Accepted for publication in PASJ(2000
Deep Near-Infrared Imaging af an Embedded Cluster in the Extreme Outer Galaxy: Census of Supernovae Triggered Star Formation
While conducting a near-infrared (NIR) survey of ``Digel Clouds'', which are
thought to be located in the extreme outer Galaxy (EOG), Kobayashi & Tokunaga
found star formation activity in ``Cloud 2'', a giant molecular cloud at the
Galactic radius of ~ 20 kpc. Additional infrared imaging showed two embedded
young clusters at the densest regions of the molecular cloud. Because the
molecular cloud is located in the vicinity of a supernova remnant (SNR) HI
shell, GSH 138-01-94, it was suggested that the star formation activity in
Cloud 2 was triggered by this expanding HI shell. We obtained deep J (1.25 um),
H (1.65 um) and K (2.2 um) images of one of the embedded clusters in Cloud 2
with high spatial resolution (FWHM ~0".3) and high sensitivity (K ~ 20 mag, 10
sigma). We identified 52 cluster members. The estimated stellar density (~ 10
pc^{-2}) suggests that the cluster is a T-association. This is the deepest NIR
imaging of an embedded cluster in the EOG. The observed K-band luminosity
function (KLF) suggests that the underlying initial mass function (IMF) of the
cluster down to the detection limit of ~ 0.1 M_sun is not significantly
different from the typical IMFs in the field and in the near-by star clusters.
The overall characteristics of this cluster appears to be similar to those of
other embedded clusters in the far outer Galaxy. The estimated age of the
cluster from the KLF, which is less than 1 Myr, is consistent with the view
that the star formation was triggered by the HI shell whose age was estimated
at 4.3 Myr (Stil & Irwin). The 3-dimensional geometry of SNR shell, molecular
cloud and the embedded cluster, which is inferred from our data, as well as the
cluster age strongly suggest that the star formation in Cloud 2 was triggered
by the SNR shell.Comment: 19pages, 8 figures, 1 table, accepted to ApJ. Full paper (pdf) with
high resolution figures available at
http://www.ioa.s.u-tokyo.ac.jp/~ck_yasui/papers/Cloud2N_1.pd
Distribution of dust clouds around the central engine of NGC 1068
We studied the distribution of dust clouds around the central engine of NGC
1068 based on shifted-and-added 8.8 - 12.3 micron (MIR) multi-filter images and
3.0 - 3.9 micron (L-band) spectra obtained with the Subaru Telescope. In a
region of 100 pc (1.4") around the central peak, we successfully constructed
maps of color temperatures and emissivities of the MIR and L-band continua as
well as the 9.7 micron and 3.4 micron dust features with spatial resolutions of
26 pc (0.37") in the MIR and 22 pc (0.3") in the L-band. Our main results are:
1) color temperature of the MIR continuum scatters around the thermal
equilibrium temperature with the central engine as the heat source while that
of the L-band continuum is higher and independent upon distance from the
central engine; 2) the peak of the 9.7 micron silicate absorption feature is
shifted to a longer wavelength at some locations; 3) the ratio of the optical
depths of the dust features is different from the Galactic values and show
complicated spatial distribution; and 4) there is a pie shaped warm dust cloud
as an enhancement in the emissivity of the MIR continuum extending about 50 pc
to the north from the central engine. We speculate that material falls into the
central engine through this cloud.Comment: 26 pages, 9 figures. Accepted for publication on Ap
Discovery of a flux-related change of the cyclotron line energy in Her X-1
We present the results of ten years of repeated measurements of the Cyclotron
Resonance Scattering Feature (CRSF) in the spectrum of the binary X-ray pulsar
Her X-1 and report the discovery of a positive correlation of the centroid
energy of this absorption feature in pulse phase averaged spectra with source
luminosity.Our results are based on a uniform analysis of observations bythe
RXTE satellite from 1996 to 2005, using sufficiently long observations of 12
individual 35-day Main-On states of the source. The mean centroid energy E_c of
the CRSF in pulse phase averaged spectra of Her X-1 during this time is around
40 keV, with significant variations from one Main-On state to the next. We find
that the centroid energy of the CRSF in Her X-1 changes by ~5% in energy for a
factor of 2 in luminosity. The correlation is positive, contrary to what is
observed in some high luminosity transient pulsars. Our finding is the first
significant measurement of a positive correlation between E_c and luminosity in
any X-ray pulsar. We suggest that this behaviour is expected in the case of
sub-Eddington accretion and present a calculation of a quantitative estimate,
which is very consistent with the effect observed in Her X-1.We urge that Her
X-1 is regularly monitored further and that other X-ray pulsars are
investigated for a similar behaviour.Comment: 4 pages, 2 figures, accepted by A&A Letter
A Technique for Estimating the Absolute Gain of a Photomultiplier Tube
Detection of low-intensity light relies on the conversion of photons to
photoelectrons, which are then multiplied and detected as an electrical signal.
To measure the actual intensity of the light, one must know the factor by which
the photoelectrons have been multiplied. To obtain this amplification factor,
we have developed a procedure for estimating precisely the signal caused by a
single photoelectron. The method utilizes the fact that the photoelectrons
conform to a Poisson distribution. The average signal produced by a single
photoelectron can then be estimated from the number of noise events, without
requiring analysis of the distribution of the signal produced by a single
photoelectron. The signal produced by one or more photoelectrons can be
estimated experimentally without any assumptions. This technique, and an
example of the analysis of a signal from a photomultiplier tube, are described
in this study.Comment: 18 pages, 6 figure
First Detection of NaI D lines in High-Redshift Damped Lyman-alpha Systems
A Near-infrared (1.18-1.35 micron) high-resolution spectrum of the
gravitationally-lensed QSO APM 08279+5255 was obtained with the IRCS mounted on
the Subaru Telescope using the AO system. We detected strong NaI D 5891,5897
doublet absorption in high-redshift DLAs at z=1.062 and 1.181, confirming the
presence of NaI, which was first reported for the rest-frame UV NaI
3303.3,3303.9 doublet by Petitjean et al. This is the first detection of NaI D
absorption in a high-redshift (z>1) DLA. In addition, we detected a new NaI
component in the z=1.062 DLA and four new components in the z=1.181 DLA. Using
an empirical relationship between NaI and HI column density, we found that all
"components" have large HI column density, so that each component is classified
as DLA absorption. We also detected strong NaI D absorption associated with a
MgII system at z=1.173. Because no other metal absorption lines were detected
in this system at the velocity of the NaI absorption in previously reported
optical spectra (observed 3.6 years ago), we interpret this NaI absorption
cloud probably appeared in the line of sight toward the QSO after the optical
observation. This newly found cloud is likely to be a DLA based upon its large
estimated HI column density. We found that the N(NaI)/N(CaII) ratios in these
DLAs are systematically smaller than those observed in the Galaxy; they are
more consistent with the ratios seen in the Large Magellanic Cloud. This is
consistent with dust depletion generally being smaller in lower metallicity
environments. However, all five clouds of the z=1.181 system have a high
N(NaI)/N(CaII) ratio, which is characteristic of cold dense gas. We tentatively
suggest that the host galaxy of this system may be the most significant
contributor to the gravitational-lens toward APM 08279+5255.Comment: 22 pages, 6 Postscript figures, 3 tables, ApJ in press (Vol.643, 2
June 2006
- …
