3,165 research outputs found

    Identification of hydrogen bonds using quantum electrodynamics

    Get PDF
    A method for the identification of hydrogen bonds was investigated from the viewpoint of the stress tensor density proposed by Tachibana and following other works in this field. Hydrogen bonds are known to exhibit common features with ionic and covalent bonds. In quantum electrodynamics, the covalent bond has been demonstrated to display a spindle structure of the stress tensor density. Importantly, this spindle structure is also seen in the hydrogen bond, although the covalency is considerably weaker than in a typical covalent bond. Distinguishing it from the ionic bond is most imperative for the identification of the hydrogen bond. In the present study, the directionality of the hydrogen bond is investigated as the ionic bond is nearly isotropic, while the hydrogen bond exhibits the directionality. It was demonstrated that the hydrogen bond can be distinguished from the ionic bond using the angle dependence of the largest eigenvalue of the stress tensor density

    Kaehler Manifolds of Quasi-Constant Holomorphic Sectional Curvatures

    Full text link
    The Kaehler manifolds of quasi-constant holomorphic sectional curvatures are introduced as Kaehler manifolds with complex distribution of codimension two, whose holomorphic sectional curvature only depends on the corresponding point and the geometric angle, associated with the section. A curvature identity characterizing such manifolds is found. The biconformal group of transformations whose elements transform Kaehler metrics into Kaehler ones is introduced and biconformal tensor invariants are obtained. This makes it possible to classify the manifolds under consideration locally. The class of locally biconformal flat Kaehler metrics is shown to be exactly the class of Kaehler metrics whose potential function is only a function of the distance from the origin in complex Euclidean space. Finally we show that any rotational even dimensional hypersurface carries locally a natural Kaehler structure, which is of quasi-constant holomorphic sectional curvatures.Comment: 36 page

    Conformal Yano-Killing tensor for the Kerr metric and conserved quantities

    Full text link
    Properties of (skew-symmetric) conformal Yano--Killing tensors are reviewed. Explicit forms of three symmetric conformal Killing tensors in Kerr spacetime are obtained from the Yano--Killing tensor. The relation between spin-2 fields and solutions to the Maxwell equations is used in the construction of a new conserved quantity which is quadratic in terms of the Weyl tensor. The formula obtained is similar to the functional obtained from the Bel--Robinson tensor and is examined in Kerr spacetime. A new interpretation of the conserved quantity obtained is proposed.Comment: 29 page

    Color Superconductivity from Supersymmetry

    Full text link
    A supersymmetric composite model of color superconductivity is proposed. Quarks and diquarks are dynamically generated as composite fields by a newly introduced strong gauge dynamics. It is shown that the condensation of the scalar component of the diquark supermultiplet occurs when the chemical potential becomes larger than some critical value. We believe that the model well captures aspects of the diquark condensate behavior and helps our understanding of the diquark dynamics in real QCD. The results obtained here might be useful when we consider a theory composed of quarks and diquarks.Comment: 4 pages, 2 figures, An error in Eq.(10) correcte

    Duality and Superconvergence Relation in Supersymmetric Gauge Theories

    Full text link
    We investigate the phase structures of various N=1 supersymmetric gauge theories including even the exceptional gauge group from the viewpoint of superconvergence of the gauge field propagator. Especially we analyze in detail whether a new type of duality recently discovered by Oehme in SU(Nc)SU(N_c) gauge theory coupled to fundamental matter fields can be found in more general gauge theories with more general matter representations or not. The result is that in the cases of theories including matter fields in only the fundamental representation, Oehme's duality holds but otherwise it does not. In the former case, superconvergence relation might give good criterion to describe the interacting non-Abelian Coulomb phase without using some information from dual magnetic theory.Comment: 20 pages, LaTe
    corecore