6 research outputs found

    Measuring performance metrics of machine learning algorithms for detecting and classifying transposable elements

    No full text
    Because of the promising results obtained by machine learning (ML) approaches in several fields, every day is more common, the utilization of ML to solve problems in bioinformatics. In genomics, a current issue is to detect and classify transposable elements (TEs) because of the tedious tasks involved in bioinformatics methods. Thus, ML was recently evaluated for TE datasets, demonstrating better results than bioinformatics applications. A crucial step for ML approaches is the selection of metrics that measure the realistic performance of algorithms. Each metric has specific characteristics and measures properties that may be different from the predicted results. Although the most commonly used way to compare measures is by using empirical analysis, a non-result-based methodology has been proposed, called measure invariance properties. These properties are calculated on the basis of whether a given measure changes its value under certain modifications in the confusion matrix, giving comparative parameters independent of the datasets. Measure invariance properties make metrics more or less informative, particularly on unbalanced, monomodal, or multimodal negative class datasets and for real or simulated datasets. Although several studies applied ML to detect and classify TEs, there are no works evaluating performance metrics in TE tasks. Here, we analyzed 26 different metrics utilized in binary, multiclass, and hierarchical classifications, through bibliographic sources, and their invariance properties. Then, we corroborated our findings utilizing freely available TE datasets and commonly used ML algorithms. Based on our analysis, the most suitable metrics for TE tasks must be stable, even using highly unbalanced datasets, multimodal negative class, and training datasets with errors or outliers. Based on these parameters, we conclude that the F1-score and the area under the precision-recall curve are the most informative metrics since they are calculated based on other metrics, providing insight into the development of an ML application

    TIP_finder : an HPC software to detect transposable element insertion polymorphisms in large genomic datasets

    No full text
    Transposable elements (TEs) are non-static genomic units capable of moving indistinctly from one chromosomal location to another. Their insertion polymorphisms may cause beneficial mutations, such as the creation of new gene function, or deleterious in eukaryotes, e.g., different types of cancer in humans. A particular type of TE called LTR-retrotransposons comprises almost 8% of the human genome. Among LTR retrotransposons, human endogenous retroviruses (HERVs) bear structural and functional similarities to retroviruses. Several tools allow the detection of transposon insertion polymorphisms (TIPs) but fail to efficiently analyze large genomes or large datasets. Here, we developed a computational tool, named TIP_finder, able to detect mobile element insertions in very large genomes, through high-performance computing (HPC) and parallel programming, using the inference of discordant read pair analysis. TIP_finder inputs are (i) short pair reads such as those obtained by Illumina, (ii) a chromosome-level reference genome sequence, and (iii) a database of consensus TE sequences. The HPC strategy we propose adds scalability and provides a useful tool to analyze huge genomic datasets in a decent running time. TIP_finder accelerates the detection of transposon insertion polymorphisms (TIPs) by up to 55 times in breast cancer datasets and 46 times in cancer-free datasets compared to the fastest available algorithms. TIP_finder applies a validated strategy to find TIPs, accelerates the process through HPC, and addresses the issues of runtime for large-scale analyses in the post-genomic era

    Asymmetric architecture is non-random and repeatable in a bird’s nests

    No full text
    corecore