1,357 research outputs found

    Nonstoichiometric doping and Bi antisite defect in single crystal Bi2Se3

    Full text link
    We studied the defects of Bi2Se3 generated from Bridgman growth of stoichiometric and nonstoichiometric self-fluxes. Growth habit, lattice size, and transport properties are strongly affected by the types of defect generated. Major defect types of Bi_Se antisite and partial Bi_2-layer intercalation are identified through combined studies of direct atomic-scale imaging with scanning transmission electron microscopy (STEM) in conjunction with energy-dispersive X-ray spectroscopy (STEM-EDX), X-ray diffraction, and Hall effect measurements. We propose a consistent explanation to the origin of defect type, growth morphology, and transport property.Comment: 5 pages, 5 figure

    Initial conditions for hybrid inflation

    Full text link
    In hybrid inflation models, typically only a tiny fraction of possible initial conditions give rise to successful inflation, even if one assumes spatial homogeneity. We analyze some possible solutions to this initial conditions problem, namely assisted hybrid inflation and hybrid inflation on the brane. While the former is successful in achieving the onset of inflation for a wide range of initial conditions, it lacks sound physical motivation at present. On the other hand, in the context of the presently much discussed brane cosmology, extra friction terms appear in the Friedmann equation which solve this initial conditions problem in a natural way.Comment: 6 pages RevTeX file with four figures incorporated (uses RevTeX and epsf). Updates to match accepted versio

    Isotropic singularity in inhomogeneous brane cosmological models

    Full text link
    We discuss the asymptotic dynamical evolution of spatially inhomogeneous brane-world cosmological models close to the initial singularity. By introducing suitable scale-invariant dependent variables and a suitable gauge, we write the evolution equations of the spatially inhomogeneous G2G_{2} brane cosmological models with one spatial degree of freedom as a system of autonomous first-order partial differential equations. We study the system numerically, and we find that there always exists an initial singularity, which is characterized by the fact that spatial derivatives are dynamically negligible. More importantly, from the numerical analysis we conclude that there is an initial isotropic singularity in all of these spatially inhomogeneous brane cosmologies for a range of parameter values which include the physically important cases of radiation and a scalar field source. The numerical results are supported by a qualitative dynamical analysis and a calculation of the past asymptotic decay rates. Although the analysis is local in nature, the numerics indicates that the singularity is isotropic for all relevant initial conditions. Therefore this analysis, and a preliminary investigation of general inhomogeneous (G0G_0) models, indicates that it is plausible that the initial singularity is isotropic in spatially inhomogeneous brane-world cosmological models and consequently that brane cosmology naturally gives rise to a set of initial data that provide the conditions for inflation to subsequently take place.Comment: 32 pages with 8 pictures. submitted to Class. Quant. Gra

    Inflationary Initial Conditions Consistent with Causality

    Full text link
    The initial condition problem of inflation is examined from the perspective of both spacetime embedding and scalar field dynamics. The spacetime embedding problem is solved for arbitrary initial spatial curvature Omega, which generalizes previous works that primarily treat the flat case Omega=1. Scalar field dynamics that is consistent with the embedding constraints are examined, with the additional treatment of damping effects. The effects of inhomogeneities on the embedding problem also are considered. A category of initial conditions are identified that are not acausal and can develop into an inflationary regime.Comment: 9 pages, 3 figures. Minor changes, matches version to appear in Physical Review

    Advanced composite rudders for DC-10 aircraft: Design, manufacturing, and ground tests

    Get PDF
    Design synthesis, tooling and process development, manufacturing, and ground testing of a graphite epoxy rudder for the DC-10 commercial transport are discussed. The composite structure was fabricated using a unique processing method in which the thermal expansion characteristics of rubber tooling mandrels were used to generate curing pressures during an oven cure cycle. The ground test program resulted in certification of the rudder for passenger-carrying flights. Results of the structural and environmental tests are interpreted and detailed development of the rubber tooling and manufacturing process is described. Processing, tooling, and manufacturing problems encountered during fabrication of four development rudders and ten flight-service rudders are discussed and the results of corrective actions are described. Non-recurring and recurring manufacturing labor man-hours are tabulated at the detailed operation level. A weight reduction of 13.58 kg (33 percent) was attained in the composite rudder

    The Raychaudhuri equations: a brief review

    Get PDF
    We present a brief review on the Raychaudhuri equations. Beginning with a summary of the essential features of the original article by Raychaudhuri and subsequent work of numerous authors, we move on to a discussion of the equations in the context of alternate non--Riemannian spacetimes as well as other theories of gravity, with a special mention on the equations in spacetimes with torsion (Einstein--Cartan--Sciama--Kibble theory). Finally, we give an overview of some recent applications of these equations in General Relativity, Quantum Field Theory, String Theory and the theory of relativisitic membranes. We conclude with a summary and provide our own perspectives on directions of future research.Comment: 35 pages, two figures, to appear in the special issue of Pramana dedicated to the memory of A. K. Raychaudhur

    Modified f(G) gravity models with curvature-matter coupling

    Full text link
    A modified f(G) gravity model with coupling between matter and geometry is proposed, which is described by the product of the Lagrange density of the matter and an arbitrary function of the Gauss-Bonnet term. The field equations and the equations of motion corresponding to this model show the non-conservation of the energy-momentum tensor, the presence of an extra-force acting on test particles and the non-geodesic motion. Moreover, the energy conditions and the stability criterion at de Sitter point in the modified f(G) gravity models with curvature-matter coupling are derived, which can degenerate to the well-known energy conditions in general relativity. Furthermore, in order to get some insight on the meaning of these energy conditions, we apply them to the specific models of f(G) gravity and the corresponding constraints on the models are given. In addition, the conditions and the candidate for late-time cosmic accelerated expansion in the modified f(G) gravity are studied by means of conditions of power-law expansion and the equation of state of matter less than -1/ 3 .Comment: 13 pages, 4 figure

    Vibrational Spectra of a Mechanosensitive Channel

    Get PDF
    We report the simulated vibrational spectra of a mechanosensitive membrane channel in different gating states. Our results show that while linear absorption is insensitive to structural differences, linear dichroism and sum-frequency generation spectroscopies are sensitive to the orientation of the transmembrane helices, which is changing during the opening process. Linear dichroism cannot distinguish an intermediate structure from the closed structure, but sum-frequency generation can. In addition, we find that two-dimensional infrared spectroscopy can be used to distinguish all three investigated gating states of the mechanosensitive membrane channel.

    Quantum creation and inflationary universes: a critical appraisal

    Get PDF
    We contrast the possibility of inflation starting a) from the universe's inception or b) from an earlier non-inflationary state. Neither case is ideal since a) assumes quantum mechanical reasoning is straightforwardly applicable to the early universe; while case b) requires that a singularity still be present. Further, in agreement with Vachaspati and Trodden [1] case b) can only solve the horizon problem if the non-inflationary phase has equation of state Îł<4/3\gamma<4/3.Comment: 21 pages Late

    Energy Conditions in f(G)f(G) Modified Gravity with Non-minimal Coupling to Matter

    Full text link
    In this paper we study a model of modified gravity with non-minimal coupling between a general function of the Gauss-Bonnet invariant, f(G)f(G), and matter Lagrangian from the point of view of the energy conditions. Such model has been introduced in Ref. [21] for description of early inflation and late-time cosmic acceleration. We present the suitable energy conditions for the above mentioned model and then, we use the estimated values of the Hubble, deceleration and jerk parameters to apply the obtained energy conditions to the specific class of modified Gauss-Bonnet models.Comment: 12 pages, no figur, Accepted for publication in Astrophysics and Space Scienc
    • …
    corecore