11 research outputs found

    Proportional Relations Between Systolic, Diastolic and Mean Pulmonary Artery Pressure are Explained by Vascular Properties

    Get PDF
    Recently, it was shown that proportional relationships exist between systolic, diastolic and mean pulmonary artery pressure (Psys, Pdia and Pmean) and that they are maintained under various conditions in both health and disease. An arterial-ventricular interaction model was used to study the contribution of model parameters to the ratios Psys/Pmean, and Pdia/Pmean. The heart was modeled by a time-varying elastance function, and the arterial system by a three-element windkessel model consisting of peripheral resistance, Rp, arterial compliance Ca, and pulmonary artery characteristic impedance Z0. Baseline model parameters were estimated in control subjects and compared to values estimated in patients with pulmonary hypertension. Results indicate that experimentally derived ratios Psys/Pmean and Pdia/Pmean could be accurately reproduced using our model (1.59 and 0.61 vs. 1.55 and 0.64, respectively). Sensitivity analysis showed that the (empirical) constancy of Psys/Pmean and Pdia/Pmean was primarily based on the inverse hyperbolic relation between total vascular resistance (RT; calculated as Rp + Z0) and Ca, (i.e. constant RTCa product). Of the cardiac parameters, only heart rate affected the pressure ratios, but the contribution was small. Therefore, we conclude that proportional relations between systolic, diastolic and mean pulmonary artery pressure result from the constancy of RTCa thus from pulmonary arterial properties, with only little influence of heart rate

    Accuracy of Doppler-Echocardiographic Mean Pulmonary Artery Pressure for Diagnosis of Pulmonary Hypertension

    Get PDF
    Background: The validity of Doppler echocardiographic (DE) measurement of systolic pulmonary artery pressure (sPAP) has been questioned. Recent studies suggest that mean pulmonary artery pressure (mPAP) might reflect more accurately the invasive pressures. Methodology/Principal Findings: 241 patients were prospectively studied to evaluate the diagnostic accuracy of mPAP for the diagnosis of PH. Right heart catheterization (RHC) and DE were performed in 164 patients mainly for preoperative evaluation of heart valve dysfunction. The correlation between DE and RHC was better when mPAP (r = 0.93) and not sPAP (r = 0.81) was assessed. Bland-Altman analysis revealed a smaller variation of mPAP than sPAP. The following ROC analysis identified that a mPAP$25.5 mmHg is useful for the diagnosis of PH. This value was validated in an independent cohort of patients (n = 50) with the suspicion of chronic-thromboembolic pulmonary hypertension. The calculated diagnostic accuracy was 98%, based on excellent sensitivity of 98 % and specificity of 100%. The corresponding positive and negative predictive values were 100%, respectively 88%. Conclusion: mPAP has been found to be highly accurate for the initial diagnosis of PH. A cut-off value of 25.5 mmHg might be helpful to avoid unnecessary RHC and select patients in whom RHC might be beneficial

    The Relationship Between the Components of Pulmonary Artery Pressure Remains Constant Under All Conditions in Both Health and Disease

    No full text
    Background: The relationships among systolic pulmonary artery pressure (SPAP), diastolic pulmonary artery pressure (DPAP), and mean pulmonary artery pressure (MPAP) have been found to be constant in humans breathing air, at rest, while supine. It would be important for those studying the pulmonary circulation if this relationship were maintained under other circumstances, such as change in posture, during exercise, or after pharmacologic manipulation. In particular, it would be useful if the relationship were maintained when treating pulmonary hypertension because this would allow different methods of measurement to be compared, such as SPAP from echocardiography and MPAP from right heart catheterization. Methods: Data were reviewed from both healthy subjects and those with pulmonary hypertension (n = 65) who had a micromanometer-tipped, high-fidelity pulmonary artery catheter inserted for between 6 and 36 h in the Scottish Pulmonary Vascular Unit between 1997 and 2003. The 5-min averages, while the patient was supine at rest, were analyzed by linear regression to compare the response of SPAP and DPAP with MPAP. Results: There were linear relationships (measured in millimeters of mercury) of SPAP with MPAP (SPAP = 1.50 MPAP + 0.46), and DPAP with MPAP (DPAP = 0.71 MPAP - 0.66). These were maintained with a high degree of accuracy following changes in posture and activity. Conclusions: SPAP, MPAP, and DPAP were strongly related, and these relationships were maintained under varying conditions. This finding will allow comparison between invasive and noninvasive descriptions of pulmonary hemodynamics found in the literature

    Non-invasive measurement using cardiovascular magnetic resonance of changes in pulmonary artery stiffness with exercise

    No full text
    BACKGROUND: Exercise stress tests are commonly used in clinical settings to monitor the functional state of the heart and vasculature. Large artery stiffness is one measure of arterial function that can be quantified noninvasively during exercise stress. Changes in proximal pulmonary artery stiffness are especially relevant to the progression of pulmonary hypertension (PH), since pulmonary artery (PA) stiffness is the best current predictor of mortality from right ventricular failure. METHODS: Cardiovascular magnetic resonance (CMR) was used to investigate the effect of exercise stress on PA pulse wave velocity (PWV) and relative area change (RAC), which are both non-invasive measures of PA stiffness, in healthy subjects. All 21 subjects (average age 26 ± 4 years; 13 female and 8 male) used a custom-made MR-compatible stepping device to exercise (two stages of mild-to-moderate exercise of 3–4 min duration each) in a supine position within the confines of the scanner. To measure the cross-sectional area and blood flow velocity in the main PA (MPA), two-dimensional phase-contrast (2D-PC) CMR images were acquired. To measure the reproducibility of metrics, CMR images were analyzed by two independent observers. Inter-observer agreements were calculated using the intraclass correlation and Bland-Altman analysis. RESULTS: From rest to the highest level of exercise, cardiac output increased from 5.9 ± 1.4 L/min to 8.2 ± 1.9 L/min (p < 0.05), MPA PWV increased from 1.6 ± 0.5 m/s to 3.6 ± 1.4 m/s (p < 0.05), and MPA RAC decreased from 0.34 ± 0.11 to 0.24 ± 0.1 (p < 0.05). While PWV also increased from the first to second exercise stage (from 2.7 ± 1.0 m/s to 3.6 ± 1.4 m/s, p < 0.05), there was no significant change in RAC between the two exercise stages. We found good inter-observer agreement for quantification of MPA flow, RAC and PWV. CONCLUSION: These results demonstrate that metrics of MPA stiffness increase in response to acute moderate exercise in healthy subjects and that CMR exercise stress offers great potential in clinical practice to noninvasively assess vascular function
    corecore