694 research outputs found

    Channel Estimation for MIMO MC-CDMA Systems

    Full text link
    The concepts of MIMO MC-CDMA are not new but the new technologies to improve their functioning are an emerging area of research. In general, most mobile communication systems transmit bits of information in the radio space to the receiver. The radio channels in mobile radio systems are usually multipath fading channels, which cause inter-symbol interference (ISI) in the received signal. To remove ISI from the signal, there is a need of strong equalizer. In this thesis we have focused on simulating the MIMO MC-CDMA systems in MATLAB and designed the channel estimation for them

    Self-organized metal nanostructures through laser driven thermocapillary convection

    Full text link
    When ultrathin metal films are subjected to multiple cycles of rapid melting and resolidification by a ns pulsed laser, spatially correlated interfacial nanostructures can result from a competition among several possible thin film self-organizing processes. Here we investigate self-organization and the ensuing length scales when Co films (1-8 nm thick) on SiO_{\text{2}} surfaces are repeatedly and rapidly melted by non-uniform (interference) laser irradiation. Pattern evolution produces nanowires, which eventually break-up into nanoparticles exhibiting spatial order in the nearest neighbor spacing, \lambda_{NN2}.The scaling behavior is consistent with pattern formation by thermocapillary flow and a Rayleigh-like instability. For h_{0}\leq2 nm, a hydrodynamic instability of a spinodally unstable film leads to the formation of nanoparticles.Comment: 10 pages, 3 figure

    Robust nanopatterning by laser-induced dewetting of metal nanofilms

    Full text link
    We have observed nanopattern formation with robust and controllable spatial ordering by laser-induced dewetting in nanoscopic metal films. Pattern evolution in Co film of thickness 1\leq h\leq8 nm on SiO_{2} was achieved under multiple pulse irradiation using a 9 ns pulse laser. Dewetting leads to the formation of cellular patterns which evolve into polygons that eventually break up into nanoparticles with monomodal size distribution and short range ordering in nearest-neighbour spacing R. Spatial ordering was attributed to a hydrodynamic thin film instability and resulted in a predictable variation of R and particle diameter D with h. The length scales R and D were found to be independent of the laser energy. These results suggest that spatially ordered metal nanoparticles can be robustly assembled by laser-induced dewetting

    Stabilization of Hydrodynamic Flows by Small Viscosity Variations

    Full text link
    Motivated by the large effect of turbulent drag reduction by minute concentrations of polymers we study the effects of a weakly space-dependent viscosity on the stability of hydrodynamic flows. In a recent Letter [Phys. Rev. Lett. {\bf 87}, 174501, (2001)] we exposed the crucial role played by a localized region where the energy of fluctuations is produced by interactions with the mean flow (the "critical layer"). We showed that a layer of weakly space-dependent viscosity placed near the critical layer can have a very large stabilizing effect on hydrodynamic fluctuations, retarding significantly the onset of turbulence. In this paper we extend these observation in two directions: first we show that the strong stabilization of the primary instability is also obtained when the viscosity profile is realistic (inferred from simulations of turbulent flows with a small concentration of polymers). Second, we analyze the secondary instability (around the time-dependent primary instability) and find similar strong stabilization. Since the secondary instability develops around a time-dependent solution and is three-dimensional, this brings us closer to the turbulent case. We reiterate that the large effect is {\em not} due to a modified dissipation (as is assumed in some theories of drag reduction), but due to reduced energy intake from the mean flow to the fluctuations. We propose that similar physics act in turbulent drag reduction.Comment: 10 pages, 17 figs., REVTeX4, PRE, submitte

    Investigation of pulsed laser induced dewetting in nanoscopic metal films

    Full text link
    Hydrodynamic pattern formation (PF) and dewetting resulting from pulsed laser induced melting of nanoscopic metal films have been used to create spatially ordered metal nanoparticle arrays with monomodal size distribution on SiO_{\text{2}}/Si substrates. PF was investigated for film thickness h\leq7 nm < laser absorption depth \sim11 nm and different sets of laser parameters, including energy density E and the irradiation time, as measured by the number of pulses n. PF was only observed to occur for E\geq E_{m}, where E_{m} denotes the h-dependent threshold energy required to melt the film. Even at such small length scales, theoretical predictions for E_{m} obtained from a continuum-level lumped parameter heat transfer model for the film temperature, coupled with the 1-D transient heat equation for the substrate phase, were consistent with experimental observations provided that the thickness dependence of the reflectivity of the metal-substrate bilayer was incorporated into the analysis. The spacing between the nanoparticles and the particle diameter were found to increase as h^{2} and h^{5/3} respectively, which is consistent with the predictions of the thin film hydrodynamic (TFH) dewetting theory. These results suggest that fast thermal processing can lead to novel pattern formation, including quenching of a wide range of length scales and morphologies.Comment: 36 pages, 11 figures, 1 tabl

    Self-similar shear-thickening behavior in CTAB/NaSal surfactant solutions

    Full text link
    The effect of salt concentration Cs on the critical shear rate required for the onset of shear thickening and apparent relaxation time of the shear-thickened phase, has been investigated systematically for dilute CTAB/NaSal solutions. Experimental data suggest a self-similar behavior of the critical shear rate and relaxation time as functions of Cs. Specifically, the former ~ Cs^(-6) whereas the latter ~ Cs^(6) such that an effective Weissenberg number for the onset of the shear thickened phase is only weakly dependent on Cs. A procedure has been developed to collapse the apparent shear viscosity versus shear rate data obtained for various values of Cs into a single master curve. The effect of Cs on the elastic modulus and mesh size of the shear-induced gel phase for different surfactant concentrations is discussed. Experiments performed using different flow cells (Couette and cone-and-plate) show that the critical shear rate, relaxation time and the maximum viscosity attained are geometry-independent. The elastic modulus of the gel phase inferred indirectly by employing simplified hydrodynamic instability analysis of a sheared gel-fluid interface is in qualitative agreement with that predicted for an entangled phase of living polymers. A qualitative mechanism that combines the effect of Cs on average micelle length and Debye parameter with shear-induced configurational changes of rod-like micelles is proposed to rationalize the self-similarity of SIS formation.Comment: 27 pages, 17 figure

    Impaired cholecystokinin-induced gallbladder emptying incriminated in spontaneous “black” pigment gallstone formation in germfree Swiss Webster mice

    Get PDF
    “Black” pigment gallstones form in sterile gallbladder bile in the presence of excess bilirubin conjugates (“hyperbilirubinbilia”) from ineffective erythropoiesis, hemolysis, or induced enterohepatic cycling (EHC) of unconjugated bilirubin. Impaired gallbladder motility is a less well-studied risk factor. We evaluated the spontaneous occurrence of gallstones in adult germfree (GF) and conventionally housed specific pathogen-free (SPF) Swiss Webster (SW) mice. GF SW mice were more likely to have gallstones than SPF SW mice, with 75% and 23% prevalence, respectively. In GF SW mice, gallstones were observed predominately in heavier, older females. Gallbladders of GF SW mice were markedly enlarged, contained sterile black gallstones composed of calcium bilirubinate and <1% cholesterol, and had low-grade inflammation, edema, and epithelial hyperplasia. Hemograms were normal, but serum cholesterol was elevated in GF compared with SPF SW mice, and serum glucose levels were positively related to increasing age. Aged GF and SPF SW mice had deficits in gallbladder smooth muscle activity. In response to cholecystokinin (CCK), gallbladders of fasted GF SW mice showed impaired emptying (females: 29%; males: 1% emptying), whereas SPF SW females and males emptied 89% and 53% of volume, respectively. Bilirubin secretion rates of GF SW mice were not greater than SPF SW mice, repudiating an induced EHC. Gallstones likely developed in GF SW mice because of gallbladder hypomotility, enabled by features of GF physiology, including decreased intestinal CCK concentration and delayed intestinal transit, as well as an apparent genetic predisposition of the SW stock. GF SW mice may provide a valuable model to study gallbladder stasis as a cause of black pigment gallstones.National Institutes of Health (U.S.) (Training Grant T32-OD10978-26)National Institutes of Health (U.S.) (Training Grant P30-ES002109)Kinship Foundation. Searle Scholars Progra

    Gastric colonisation with a restricted commensal microbiota replicates the promotion of neoplastic lesions by diverse intestinal microbiota in the Helicobacter pylori INS-GAS mouse model of gastric carcinogenesis

    Get PDF
    Objectives: Gastric colonisation with intestinal flora (IF) has been shown to promote Helicobacter pylori (Hp)-associated gastric cancer. However, it is unknown if the mechanism involves colonisation with specific or diverse microbiota secondary to gastric atrophy. Design: Gastric colonisation with Altered Schaedler's flora (ASF) and Hp were correlated with pathology, immune responses and mRNA expression for proinflammatory and cancer-related genes in germ-free (GF), Hp monoassociated (mHp), restricted ASF (rASF; 3 species), and specific pathogen-free (complex IF), hypergastrinemic INS-GAS mice 7 months postinfection. Results: Male mice cocolonised with rASFHp or IFHp developed the most severe pathology. IFHp males had the highest inflammatory responses, and 40% developed invasive gastrointestinal intraepithelial neoplasia (GIN). Notably, rASFHp colonisation was highest in males and 23% developed invasive GIN with elevated expression of inflammatory biomarkers. Lesions were less severe in females and none developed GIN. Gastritis in male rASFHp mice was accompanied by decreased Clostridum species ASF356 and Bacteroides species ASF519 colonisation and an overgrowth of Lactobacillus murinus ASF361, supporting that inflammation-driven atrophy alters the gastric niche for GI commensals. Hp colonisation also elevated expression of IL-11 and cancer-related genes, Ptger4 and Tgf-β, further supporting that Hp infection accelerates gastric cancer development in INS-GAS mice. Conclusions: rASFHp colonisation was sufficient for GIN development in males, and lower GIN incidence in females was associated with lower inflammatory responses and gastric commensal and Hp colonisation. Colonisation efficiency of commensals appears more important than microbial diversity and lessens the probability that specific gastrointestinal pathogens are contributing to cancer risk.National Institutes of Health (U.S.) (grant R01 AI37750)National Institutes of Health (U.S.) (grant R01 CA093405)National Institutes of Health (U.S.) (grant P30-ES02109)National Institutes of Health (U.S.) (grant P01 CA028842)National Institutes of Health (U.S.) (grant T32 RR07036
    corecore