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ABSTRACT 38 

“Black” pigment gallstones form in sterile gallbladder bile in the presence of excess 39 

bilirubin conjugates (“hyperbilirubinbilia”) from ineffective erythropoiesis, hemolysis or 40 

induced enterohepatic cycling (EHC) of unconjugated bilirubin.  Impaired gallbladder 41 

motility is a less well-studied risk factor.  We evaluated the spontaneous occurrence of 42 

gallstones in adult germfree (GF) and conventionally housed specific pathogen-free 43 

(SPF) Swiss Webster (SW) mice.  GF SW mice were more likely to have gallstones than 44 

SPF SW mice, with 75% and 23% prevalence, respectively.  In GF SW mice, gallstones 45 

were observed predominately in heavier, older females.  Gallbladders of GF SW mice 46 

were markedly enlarged, contained sterile “black” gallstones comprised of calcium 47 

bilirubinate and <1% cholesterol, and had low-grade inflammation, edema and epithelial 48 

hyperplasia.  Hemograms were normal, but serum cholesterol was elevated in GF 49 

compared to SPF SW mice, and serum glucose levels were positively related to 50 

increasing age.  Aged GF and SPF SW mice had deficits in gallbladder smooth muscle 51 

activity.  In response to cholecystokinin (CCK), gallbladders of fasted GF SW mice 52 

showed impaired emptying (females: 29%; males: 1% emptying), whereas SPF SW 53 

females and males emptied 89% and 53% of volume, respectively.  Bilirubin secretion 54 

rates of GF SW mice were not greater than SPF SW mice, repudiating an induced EHC.  55 

Gallstones likely developed in GF SW mice due to gallbladder hypomotility, enabled by 56 

features of GF physiology, including decreased intestinal CCK concentration and delayed 57 

intestinal transit, as well as an apparent genetic predisposition of the SW stock.  GF SW 58 

mice may provide a valuable model to study gallbladder stasis as a cause of “black” 59 

pigment gallstones. 60 



3 

 61 

Keywords: “Black” Pigment Gallstones, Germfree Mice, Impaired Gallbladder Motility, 62 

Cholecystokinin 63 

 64 

INTRODUCTION 65 

Gallstone disease affects more than 20 million people in the United States and results in 66 

more than 700,000 cholecystectomies annually (32, 45, 46).  Although not widely 67 

studied, pigment gallstones are observed in a variety of clinical conditions, and may 68 

account for up to 20-25% of gallstones among patients that undergo cholecystectomy in 69 

the Western world (19, 37, 55).  While “brown” pigment gallstones form in septic bile, 70 

“black” pigment gallstones develop classically in sterile bile with the critical risk factor 71 

of hyperbilirubinbilia, defined as biliary hypersecretion of bilirubin conjugates, due 72 

principally to chronic hemolysis secondary to multiple syndromes, or ineffective 73 

erythropoiesis as seen with vitamin B12 and folate deficiencies (38, 48, 54, 55).  74 

Hyperbilirubinemia may also occur with prolonged intestinal transit, antibiotic therapy 75 

and ileal dysfunction from induced enterohepatic cycling (EHC) of unconjugated 76 

bilirubin (UCB), wherein UCB enters the enterohepatic circulation to be reconjugated, 77 

and resecreted into bile (18, 53-56).  78 

A pathophysiological role for intestinal bacteria, or the lack thereof, in “black” 79 

pigment gallstone formation has not been well-documented, but may involve altered 80 

intestinal mucosal barrier function, and changes in intestinal bilirubin deconjugation and 81 

formation of urobilinoids, facilitating EHC of UCB (9, 47, 54, 55, 59).  The Division of 82 

Comparative Medicine at M.I.T. maintains a germfree (GF) Swiss Webster (SW) 83 
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breeding colony to facilitate embryo transfer rederivation of other lines of mice into a GF 84 

status, and periodically purchases conventionally housed specific pathogen-free (SPF) 85 

SW mice for controls in various research studies.  SW mice are customarily used as an 86 

inexpensive outbred stock for biomedical research, transgenic technology, and as sentinel 87 

mice for monitoring infectious diseases in research colonies.  Interestingly, necropsies of 88 

adult female and male GF SW mice from our colony revealed 100% prevalence of 89 

markedly enlarged gallbladders, with 75% containing gallstones morphologically 90 

consistent with “black” pigment gallstones of humans, whereas SPF SW mice 91 

demonstrated 23% gallstone prevalence and normal sized gallbladders.  92 

It is known that GF mice have delayed intestinal transit, with documented two 93 

times less cholecystokinin (CCK)-like immunoreactivity in the small intestine from rapid 94 

degradation of CCK, compared to normally colonized mice, and that CCK acts to 95 

promote propulsive activity of the intestine (30, 34, 35, 50, 57, 61).  The slower intestinal 96 

transit observed in GF mice is reminiscent of the altered peristaltic function in humans 97 

and experimental animals with cholesterol gallstone disease (36, 37, 58, 61).  Although 98 

dysfunction in gallbladder and small intestinal motility has been linked to cholesterol 99 

gallstone disease, little is known about how hypomotility of the gallbladder influences 100 

“black” pigment gallstone formation (36, 37, 58).  Gallbladder dysfunction has been 101 

reported in conditions associated with the formation of “black” pigment gallstones, 102 

including liver cirrhosis, truncal vagotomy and administration of total parenteral 103 

nutrition, and in conditions more often associated with cholesterol gallstones such as 104 

obesity and/or type II diabetes (4, 36, 37, 49, 54, 58).  With recognized delayed intestinal 105 

transit in GF mice and the indefinite association of “black” pigment gallstones with 106 
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gallbladder dysfunction in humans, we postulated that GF SW mice may provide a 107 

unique, spontaneous animal model to investigate the role of the gut microbiota and 108 

impaired gallbladder motility in “black” pigment gallstone formation in humans. 109 

In turn, we characterized gallstone disease in GF and SPF SW mice by 110 

demographic profiling, logistic regression analysis, various gallbladder bile and gallstone 111 

analyses, and gallbladder and liver histology.  Mice were screened for hematopoietic 112 

abnormalities, and conjugated and unconjugated bilirubin levels in hepatic bile 113 

determined to rule out ineffective erythropoiesis or hemolysis, and induced EHC of UCB, 114 

respectively.  The proposed mechanism of impaired gallbladder motility was probed by 115 

determination of fasting gallbladder volumes and bile pH, screening for metabolic 116 

abnormalities such as diabetes, and evaluation of calcium ion (Ca2+) activity of 117 

gallbladder smooth muscle and gallbladder responsiveness to exogenous CCK.     118 

 119 

METHODS 120 

Mice 121 

GF outbred Tac:SW mice were obtained from Taconic Farms (Germantown, NY) and 122 

maintained as a breeding colony in a facility accredited by the Association for the 123 

Assessment and Accreditation of Laboratory Animal Care, International.  One hundred 124 

and twenty-five female and 99 male GF SW mice were bred periodically and aged further 125 

for purposes of this study (age range: 5 - 22 months; 10.7 ± 0.2 months old) (Table 1).  126 

For comparison to GF SW mice, SPF mice representing the same outbred genetic stock 127 

but colonized with intestinal microbiota were evaluated.  Seventy-five female and 53 128 

male SPF SW mice were purchased from Taconic as retired breeders (age range: 8 - 15 129 
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months; 10.1 ± 0.2 months old) (Table 1).  SPF SW mice were free of exogenous murine 130 

viruses, bacterial pathogens and parasites, and animal use was approved by the 131 

Institutional Animal Care and Use Committees of the collaborating institutions. 132 

Husbandry 133 

GF SW mice were housed in sterile isolators in open-top polycarbonate cages on 134 

autoclaved hardwood bedding and fed autoclaved water and diet (Purina 5021, Purina 135 

Mills, St. Louis, MO) ad libitum.  The diet had a guaranteed analysis of not less than 20% 136 

crude protein and 9% crude fat, and not more than 5% crude fiber and 6.5% ash.  137 

Macroenvironmental conditions included a 14:10 light / dark cycle and temperature 138 

maintenance at 68 ± 2ºF.  Weekly microbiologic monitoring of interior isolator surfaces, 139 

feed, water, and feces confirmed absence of all aerobic and anaerobic bacteria and fungi.  140 

SPF SW mice were housed in a barrier facility in standard, non-autoclaved microisolator 141 

cages under similar environmental conditions.  To standardize nutrition, these mice were 142 

fed the same autoclaved diet for the duration of their lives.  SPF status was monitored by 143 

a sentinel program. 144 

Determination of Gallbladder Volume and Bile pH 145 

Mice were euthanized using carbon dioxide and at necropsy, relative gallbladder size and 146 

gross evidence of gallstones (relative size, approximate amount and color) were recorded. 147 

Gallbladder volume (µL) and pH of gallbladder bile were determined for fasted 148 

GF (n = 6 females, 6 males; 12.0 ± 0.9 months old) and SPF (n = 14 females, 15 males; 149 

11.2 ± 0.6 months old) SW mice.  Mice were anesthetized by intraperitoneal injection of 150 

a cocktail of anesthetics in 9% NaCl, containing ketamine (80 mg/kg), xylazine (8 151 

mg/kg), acepromazine (2 mg/kg) and atropine (0.012 mg/kg), and terminal 152 
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cholecystectomies were performed as previously described (18).  Following gallbladder 153 

removal, mice were euthanized by anesthetic overdose, followed by bilateral 154 

thoracotomy.  Gallbladder bile was drained into tared 200 µL microcentrifuge tubes, and 155 

gallbladder volumes were quantified gravimetrically by equating weight and volume (i.e., 156 

1 mg = 1 µL).  Immediately afterwards, gallbladder bile pH was measured by a micro pH 157 

electrode (Microelectrodes Inc., Bedford, NH).  158 

Gallbladder Bile and Gallstone Analyses 159 

To characterize gallbladder bile sediment and gallstone morphology, fresh and previously 160 

frozen (-70°C) gallbladder bile samples from GF SW mice with (n = 5 females, 2 males; 161 

16.9 ± 2.0 months old) or without (n = 3 males; 10.3 ± 2.3 months old) gross evidence of 162 

gallstones were evaluated microscopically under direct light.  These samples from GF 163 

SW mice were compared to bile of 7 SPF SW mice (n = 3 females, 4 males; 10 months 164 

old) lacking gross evidence of gallstones and one 15-month-old SPF SW female mouse 165 

with gallstones, though the latter sample was kept at room temperature for an extended 166 

period of time prior to analysis.  Additionally, fresh gallbladder tissue, bile and gallstones 167 

from seven 11-month-old GF SW female mice (n = 5 with gallstones) were examined by 168 

direct light and polarized light microscopy. 169 

Gallstones from two 15-month-old and two 22-month-old GF SW females and 170 

one 15-month-old GF SW male were sent to the Laboratory for Stone Research (Newton, 171 

MA) for compositional analysis by polarized light microscopy and infrared spectroscopy.  172 

To determine cholesterol content of gallstones, microcentrifuge tubes containing 173 

gallstones in bile from 9-month-old GF (n = 5 females, 4 males) and SPF (n = 3 females) 174 

SW mice were centrifuged for 15 min in a tabletop microcentrifuge (ISC BioExpress, 175 
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Kaysville, UT).  After bile supernatant was removed, gallstones were washed by 176 

vortexing thoroughly with 200 µL of 1% (w/v) Na tauroursodeoxycholate (NaTUDC).  177 

Then, samples from GF SW males and from SPF SW females were pooled into 1 sample 178 

per group, whereas gallstones from female GF SW mice were combined into 2 samples.  179 

Samples were washed 3 more times with 200 µL NaTUDC and then layered carefully 180 

onto a Nuclepore polycarbonate membrane filter (47 mm, 0.2 µm), washed with 5 mL 181 

double distilled water, and filter dried under house vacuum.  Filter residue was carefully 182 

scraped with the flat edge of a metal spatula and transferred to a tared aluminum 183 

weighing dish that had been dried under house vacuum at 60˚C for 24 hours (hr).  Dried 184 

gallstone samples were then resuspended in 150 µL isopropanol.  Clumps were broken 185 

gently with a glass stirring rod, samples vortexed for 4 min and incubated at 37˚C for 2 hr 186 

in a shaking water bath.  Immediately prior to analysis, 450 µL acetonitrile was added to 187 

each sample.  Gallstones were analyzed for cholesterol content by a modified HPLC 188 

method using a Kinetex C18 column (2.6 µm particle size; Phenomenex, Torrance, CA) 189 

and eluting with acetonitrile:isopropanol (3:1, v/v)  (52).  190 

Gallstones from 12-month-old GF (n = 3 females, 3 males; pooled into 1 sample) 191 

and SPF (n = 1 female) SW mice were also analyzed by electron paramagnetic resonance 192 

(EPR) spectroscopy.  Gallbladder bile supernatant was removed and gallstones were 193 

washed five times with Chelex-treated water.  The water was obtained from a Milli-Q 194 

purification system (18.2 mΩcm-1) and treated with Chelex resin (Biorad, 10 g/L, stirred 195 

for >1 hr and filtered) to remove contaminating metal ions prior to use.  For washing, the 196 

gallstones were suspended in 180 µL of Milli-Q water in the sample reservoir of a 197 

centrifugal filter device, gently vortexed, and centrifuged [10,000 rpm x 5 minutes (min), 198 
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20oC].  The washed gallstones remaining in the reservoir were re-suspended in the 199 

Chelex-treated water (180 µL), transferred to acid-washed (2 M HCl) quartz EPR tubes 200 

and frozen in liquid nitrogen prior to analysis and stored at -80oC.  A sample of 201 

commercial bilirubin [98% (EmM/453 = 60); Sigma-Aldrich] was prepared in Chelex-202 

treated Milli-Q water and frozen in liquid nitrogen prior to analysis.  EPR spectra (X-203 

band, 9 GHz) were recorded on a Bruker EMX spectrometer with an ER 4199HS cavity.  204 

An ESR900 cryostat outfitted with a Cernox sensor was employed for all measurements.  205 

Unless noted otherwise, the modulation amplitude and frequency was 1 mT at 100 kHz. 206 

Samples of twice washed gallstones (4 samples pooled into 1 sample) and undiluted 207 

gallbladder bile (1 individual sample) from 14-month-old female GF SW mice, as well as 208 

gallstones washed five times (4 samples pooled into 1 sample) from 15-month-old GF 209 

SW mice were also analyzed.  210 

Additional gallstones and gallbladder bile from GF (n = 2 females, 4 males; 12 211 

months old) and SPF (n = 3 females; 11 months old) SW mice were aseptically collected 212 

for culture under aerobic and anaerobic (gas mix) conditions to confirm absence of 213 

gallbladder infection. 214 

Screening for Hematopoietic or Metabolic Abnormalities 215 

Following an overnight fast and carbon dioxide euthanasia, post-mortem cardiac blood 216 

was collected for complete blood count (CBC) from 11 female and 12 male GF SW mice 217 

(10.8 ± 0.6 months old), and 3 female and 3 male SPF SW mice (12 months old), and for 218 

serum chemistry analysis from 11 female and 15 male GF SW mice (12.7 ± 1.1 months 219 

old), and 4 female and 5 male SPF SW mice (10 months old).  CBCs were measured 220 

using a Hemavet 950FS analyzer (Drew Scientific, Waterbury, CT) and serum was sent 221 
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to IDEXX Laboratories (Memphis, TN) for a chemistry panel of 21 analytes [Table 5; 3 222 

analytes (bicarbonate, creatine kinase, gamma-glutamyl transferase) excluded due to 223 

insufficient quantity for comparison]. 224 

Because a predisposition to diabetes mellitus was previously reported for Tac:SW 225 

mice, GF and SPF SW mice were screened for glucosuria, fasting hyperglycemia (>300 226 

mg/dL) and glucose intolerance (29, 39, 40), and pancreata were examined histologically.  227 

Naturally voided urine was collected in sterile polycarbonate caging, or via post-mortem 228 

cystocentesis from 11 female and 3 male GF SW mice (11.0 ± 0.7 months old), and 5 229 

female SPF SW mice (12 months old).  Clinical urinalysis dipsticks (Multistix 10 SG, 230 

Siemens Healthcare Diagnostics, Tarrytown, NY) were used to measure protein, glucose, 231 

leukocytes, nitrites, ketones, bilirubin, blood and urobilinogen.  Specific gravity was 232 

measured when a sufficient urine volume was collected.   233 

Glucose tolerance testing (GTT) was performed on 9-month-old GF (n = 6 234 

females, 5 males) and SPF (n = 6 females, 6 males) SW mice.  Mice were fasted 235 

overnight, weighed, and baseline glucose was measured in blood obtained by tail nick, 236 

followed by intraperitoneal injection of 1 gram of 10% dextrose per kg body weight.  237 

Blood glucose levels were measured using a glucometer (AlphaTRAK, Abbott 238 

Laboratories, Abbott Park, IL) at time 0, 15, 30, 60, 90, and 120 min post glucose dosing.   239 

Additional serum samples were collected 2 days later from these same mice after 240 

an 8 hr fast for measurement of serum glucose and insulin levels by the Mouse 241 

Metabolism Core (MMC; Baylor College of Medicine, Diabetes and Endocrinology 242 

Research Center, Houston, TX).  Cardiac blood was collected following carbon dioxide 243 

euthanasia.  Sera from 12-month-old GF (n = 4 females, 4 males) and SPF (n = 3 244 
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females, 3 males) SW mice were collected for glucose and glycated hemoglobin (HbA1c) 245 

levels performed by the Comparative Pathology Laboratory (CPL; University of 246 

California, School of Veterinary Medicine, Davis, CA). 247 

Histology 248 

Abdominal organs were evaluated grossly at necropsy and gallbladder, liver, pancreas 249 

and kidneys were fixed in buffered 10% formalin and processed for histology.  Formalin-250 

fixed tissues were evaluated from GF SW mice with gallstones (n = 11 females, 7 males; 251 

14.1 ± 1.3 months old), without gallstones (n = 1 female, 7 males; 10.5 ± 1.2 months old), 252 

and from SPF SW mice without gallstones (n = 6 females, 6 males; 9.5 ± 0.3 months 253 

old).  Tissues were embedded in paraffin, sectioned at 4 µm, stained with hematoxylin 254 

and eosin (H&E), and evaluated by a board-certified veterinary pathologist blinded as to 255 

sample identity.  Gallbladders were graded semi-quantitatively on a scale of 0 (normal) to 256 

3 (severe) for histomorphological changes, including inflammation, edema, hyalinosis, 257 

metaplasia, hyperplasia and dysplasia.  The liver, pancreas and kidneys were qualitatively 258 

assessed for any relevant pathology.  Because mild liver lesions were observed in some 259 

mice, liver sections were further assessed on a scale of 0 to 4 for lobular and portal 260 

inflammation, and dysplasia/neoplasia.  The number of lobes with >5 inflammatory foci 261 

was used to calculate a cumulative hepatitis index score, as previously described (41).  262 

Gallbladder Muscle Activity 263 

Calcium imaging studies were performed as previously described in greater detail (25).  264 

Age-matched GF and SPF SW female mice (10 months old; n = 4 per group) were 265 

anesthetized with isoflurane, exsanguinated and underwent cholecystectomy.  266 

Gallbladders were opened and mounted serosa side up between two pieces of Sylgard 267 
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(Dow Corning, Midland, MI) connected by metal pins.  Mounted tissues were incubated 268 

in HEPES buffer containing 10 µM fluo-4 AM and 2.5 µg/ml pluronic acid for 45 min at 269 

room temperature, and then rinsed in HEPES buffer for at least 30 min to allow de-270 

esterification.  The fluo-4- loaded gallbladders were placed in an imaging chamber and 271 

superperfused with aerated physiological saline solution (PSS). Ca2+ transients were 272 

visualized using a Nikon TMD inverted microscope with a 60x water immersion lens 273 

attached to a Noran Oz laser confocal system.  After a 20 min equilibration period, basal 274 

Ca2+ activity was recorded over periods of 30 to 60 seconds (15-30 frames per second), 275 

from three to seven fields per gallbladder.  To measure agonist-induced Ca2+ activity, 276 

carbachol (3 µM in PSS) was superfused over the tissue and Ca2+ transients were 277 

recorded every few minutes over a 20 min period.  Data were analyzed using SparkAN, a 278 

custom software program written at the University of Vermont, and also compared to 279 

baseline data obtained from 7-10-week-old SPF SW males. 280 

Responsiveness to Exogenous Cholecystokinin 281 

Fasted GF (n = 9 females, 10 males; 8 months old) and SPF (n = 8 females, 7 males; 8 282 

months old) SW mice were administered cholecystokinin octapeptide (CCK) to evaluate 283 

gallbladder emptying.  Under injectable anesthesia described above, mice were injected 284 

intravenously with 2 µL/g of CCK solution (10-5 mg/mL sulfated CCK; Tocris 285 

Bioscience, Bristol, UK) in sterile PBS, pH 7.4.  After 20 min, cholecystectomies were 286 

performed and gallbladder volumes (µL) were determined as described above.  Age-287 

matched fasted controls (GF SW mice: n = 9 females, 9 males; SPF SW mice: n = 7 288 

females, 9 males) received an injection of sterile PBS or no injection.  289 

Analysis of Conjugated and Unconjugated Bilirubin in Hepatic Bile 290 



13 

Conjugated and unconjugated bilirubin concentrations (µM) and secretion rates (nmol/hr) 291 

in hepatic bile were determined for unfasted GF (n = 19 females, 8 males; 11.1 ± 0.1 292 

months old) and SPF (n = 15 females, 7 males; 11.3 ± 0.5 months old) SW mice.  Mice 293 

were induced with an anesthetic cocktail administered intraperitoneally as described 294 

above.  Following cannulation of the hepatic bile duct, hepatic biliary outputs and 295 

secretion rates were assessed as previously described (17).  To prevent actinic and 296 

oxidative degradation of bilirubin, hepatic bile was kept in the dark and/or under red 297 

lights.  Hepatic biliary species were determined and quantified by HPLC using the 298 

method of Spivak and Yuey (44).  Percent UCB (%) was calculated by dividing the 299 

concentration of UCB by the sum of the concentrations of all individual bilirubin species 300 

(i.e., all mono- and di-conjugates, plus UCB).  Secretion rates were normalized to 1 hr of 301 

hepatic bile flow. 302 

Statistics  303 

Table 1 provides demographic data on SW mice with and without gallstones.  Logistic 304 

regression was performed to determine the likelihood of SW mice having gallstones 305 

(binary variable), controlling for microbial status (GF or SPF; binary variable), age 306 

(continuous variable), sex (binary variable) and body weight (continuous variable), and 307 

was reported through adjusted (crude) odds ratios (OR), 95% confidence intervals (95% 308 

CI), and p-values of the overall test of the model and each parameter estimate.  For each 309 

covariate, the likelihood-ratio chi-squared test for parameter estimates was used to 310 

compare the full logistic model to a model excluding the covariate of interest.  The 311 

favored model included only covariates found to contribute to the predictability of the 312 

model.  All possible interactions in the favored model were evaluated as a set to 313 
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determine significance using a chi-squared test to compare the favored logistic models, 314 

with or without the set of interaction variables.  Confounders were defined as covariates 315 

that, when added to the favored model, resulted in ≥10% change in the slope of the major 316 

exposure, microbial status.  Further, a stratified logistic regression analysis was 317 

performed as described above and was segregated by microbial status, with age as the 318 

major exposure and sex and body weight as covariates.     319 

Presence of gallstones, microbial status, age, sex and body weight were tested 320 

against individual quantitative analytes to determine significant effect(s) by analysis of 321 

covariance (ANCOVA), also with separate ANCOVAs performed for both microbial 322 

statuses.  Adjusted means were calculated for both microbial statuses, with the 323 

continuous variables (age, body weight) fixed at their means; data was reported as 324 

adjusted mean ± standard error.  Percentage data (hematocrit, HbA1c, unconjugated 325 

bilirubin) were arcsin transformed prior to analysis; reported adjusted mean ± standard 326 

error reflects untransformed data.  327 

Where ANCOVAs were not performed, GF and SPF SW mice were compared 328 

and further analyzed within both microbial statuses by presence of gallstones and sex.  329 

Age and body weight values were also compared between GF and SPF SW mice 330 

analyzed using a two-sample test of group means assuming equal variance (two-tailed), 331 

and reported as mean ± standard error.  Glucose tolerance testing data was analyzed using 332 

a two-sample test of group means (two-tailed), for comparison between groups at 333 

baseline and to determine the level of statistical significance when the difference between 334 

the mean area under the curves (AUC), determined by the trapezoidal rule with baselines 335 

set at zero, of two groups was considered.  Median pathology scores were compared 336 
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between groups using a Mann-Whitney two-sample rank-sum test.  To analyze 337 

gallbladder muscle activity, a one-way analysis of variance (ANOVA) with Bonferroni 338 

adjustment for multiple comparisons between groups was used.   339 

Statistical analysis was performed using STATA/IC 13.0 for Mac (StataCorp; 340 

College Station, TX) and Prism Version 5.0 (GraphPad Software; La Jolla, CA), with 341 

p<0.05 considered statistically significant.   342 

 343 

RESULTS 344 

GF SW mice had markedly enlarged gallbladders, irrespective of gallstones 345 

Necropsy of GF SW mice revealed that 169 of 224 mice (75%) showed gallbladders 346 

containing grossly visible, variably sized gallstones numbering from few to numerous 347 

(Table 1; Figure 1A-C).  Fasted and non-fasted GF SW mice had markedly enlarged 348 

gallbladders that commonly measured 1.0 cm long by 0.5 cm wide (Figure 1A-B).  Most 349 

SPF SW mice (77%; 98/128) displayed normal appearing gallbladders with no gross 350 

evidence of gallstones (Table 1).  However, 15 female and 15 male (23%) gallbladders 351 

contained gallstones (Table 1).   352 

GF SW mice (n = 12; 5 females, 4 males with gallstones) exhibited greater 353 

gallbladder volumes (179.0 ± 18.8 µL; SPF SW mice: 73.6 ± 11.3 µL) and lower pH of 354 

gallbladder bile (6.8 ± 0.1; SPF SW mice: 7.4 ± 0.1) compared to SPF SW mice (n = 29; 355 

1 female, 5 males with gallstones).  Statistically significant differences were unrelated to 356 

presence of gallstones, age or body weight, but related to microbial status [gallbladder 357 

volume: F(1, 35) = 20.37, p<0.001; gallbladder bile pH: F(1, 35) = 11.56, p<0.01] and 358 

sex [gallbladder volume: F(1, 35) = 28.51, p<0.0001; gallbladder bile pH: F(1, 35) = 359 
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10.31, p<0.01] (Figure 1D-E).  When analysis was stratified by microbial status, 360 

differences in bile pH according to sex were found to be non-significant, whereas 361 

significant effects were maintained on gallbladder volume in both GF (p<0.01) and SPF 362 

(p<0.001) SW mice, with females (GF SW mice: 229.4 ± 20.2 µL; SPF SW mice: 124.0 363 

± 15.2 µL) containing greater gallbladder volumes than males (GF SW mice: 130.9 ± 364 

21.6 µL; SPF SW mice: 25.6 ± 14.0 µL) (Figure 1D-E). 365 

Gallstones developed predominantly in obese, older female GF SW mice 366 

Using logistic regression, the odds of developing gallstones for GF SW mice was 11 367 

times those of SPF SW mice, controlled for age and body weight (p<0.001) (Table 2).  368 

Additionally, a one month increase in age and a one gram increase in body weight of SW 369 

mice increased the odds of developing gallstones by 15% (p<0.01) and 5% (p<0.01), 370 

respectively (Table 2).  Sex was found non-predictive in the full model, and no 371 

interaction or confounding was demonstrated. 372 

Stratified logistic regression revealed the odds of developing gallstones for female 373 

GF SW mice was 3 times those of males, controlled for age and body weight (p<0.01) 374 

(Table 3).  Further, a one month increase in age and a one gram increase in body weight 375 

of GF SW mice increased the odds of developing gallstones by 23% (p<0.01) and 8% 376 

(p<0.01), respectively (Table 3).  Of the 169 GF SW mice with gallstones, 105 (62%) 377 

were females and 64 (38%) were males of similar age.  Of the 55 mice without 378 

gallstones, 20 (36%) were females, and 35 (64%) were males.  Stratified logistic 379 

regression analysis found no significant predictability for presence of gallstones in SPF 380 

SW mice, controlling for age, sex and body weight.   381 
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Gallstone morphologic features and composition were consistent with “black” 382 

pigment gallstones 383 

Gallstones were variable in size (all less than 1 mm), and their color ranged from yellow 384 

to dark brown to black.  On average, gallstones from GF SW mice were grossly dark in 385 

color and durable (Figure 1A-C), whereas SPF SW gallstones were pale and friable.   386 

Gallstones from GF SW mice viewed under direct light microscopy had well 387 

defined smooth edges and were yellow to light brown on the outside, with a more 388 

pigmented, darker brown core (Figure 1F).  Using polarized light microscopy, the 389 

outermost aspect of the gallstones was almost translucent and revealed speckles of 390 

birefringent material, but not distinct crystals (Figure 1H-I).  Direct light microscopy of 1 391 

gallstone sample from an SPF SW mouse showed a few gallstones that were much lighter 392 

in color and lacked a dark core (Figure 1G).  Direct light microscopy of gallbladder bile 393 

from GF and SPF SW mice lacking visible gallstones revealed pale to light brown, 394 

amorphous sediment, which was also present in the bile from GF SW mice with 395 

gallstones (Figure 1F). 396 

 Gallstones from a 15-month-old female GF SW mouse analyzed by the 397 

Laboratory for Stone Research by polarized light microscopy and infrared spectroscopy 398 

were composed of “100%” calcium bilirubinate; note that no crystalline substances were 399 

observed, and acid or neutral salts were not defined, but was likely Ca(HUCB)2 based on 400 

gallbladder bile pH.  The remainder of gallstones submitted for analysis contained non-401 

crystalline, undefined proteinaceous material.   402 
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Cholesterol content was <1% cholesterol content in all gallstone samples analyzed 403 

(GF SW females: 0.7%; GF SW males: 0.6%; SPF SW females: 0.1%).  Aerobic and 404 

anaerobic cultures of GF and SPF SW gallstones and gallbladder bile were negative.   405 

EPR spectroscopic analysis supported the presence of bilirubin radicals in SW 406 

gallstones 407 

Previous reports have indicated the presence of EPR-detectable transition metals ions, 408 

specifically Mn2+, Cu2+ and Fe3+, as well as bilirubin radicals in “black” pigment 409 

gallstones (7, 13).  In our study, EPR-detectable species were identified in samples of 410 

gallstones that were washed two (GF SW) and five (GF and SPF SW) times, and in 411 

gallbladder bile (GF SW).  EPR spectroscopic analysis of the gallstones washed five 412 

times from GF and SPF SW mice revealed features consistent with those observed for 413 

commercial bilirubin: the signal centered at g = 2.00 indicates a radical species and is 414 

attributed to the presence of bilirubin radicals (Figure 2, Top Panel).   415 

 Signals from EPR-detectable transition metal ions attributed to Mn2+ (g = 2.01, a 416 

= 8.9 mT), Cu2+ (g = 2.27, a = 16 mT), and Fe3+ (g = 4.31) were observed in twice 417 

washed gallstones and gallbladder bile obtained from GF SW mice (Figure 2, Middle 418 

Panel).  Signals from Mn2+ and Cu2+ are visible in the g = 2 region of the spectra, and the 419 

expected hyperfine patterns (4-line, a = 16 mT from the I = 3/2 Cu nucleus; 6-line, a = 420 

8.9 mT from the I = 5/2 55Mn nucleus) from these individual species overlap 421 

considerably.  The observed pattern of lines around g = 2.01 for a gallbladder bile sample 422 

(vide infra) could be accurately reproduced by the summation of spectra obtained for 423 

aqueous solutions of Mn2+ and Cu2+ (obtained from commercial atomic absorption 424 

standard solutions) (Figure 2, Bottom Panel).  Thorough washing (5 times) of gallstones 425 
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from GF SW mice with Chelex-treated Milli-Q water resulted in a loss of the signals 426 

attributed to the transition metal ions observed in twice washed gallstones and in 427 

gallbladder bile.  The loss of the signals was gradual (i.e., decreased signal intensities 428 

with more washing); after five washes, the transition metal ions were either undetectable 429 

or significantly reduced (<10% of intensity), compared to gallstones washed twice.  In 430 

contrast to prior studies, our results show that the transition metal ion signals likely arise 431 

from the gallbladder bile rather than the gallstones (7, 13).     432 

Consistent with the presence of bilirubin radicals, a sharp signal at g = 2.00 was 433 

also observed in the twice washed gallstone and gallbladder bile samples.  In contrast to 434 

the transition metal ion signals, this radical signal persisted in the gallstones washed five 435 

times, indicating that the signal likely arises from a species in the gallstones themselves 436 

(Figure 2, Middle Panel).  The possibility of another radical species, or the presence of 437 

other radicals that are not detectable under these conditions, cannot be ruled out from 438 

these experiments. 439 

Hemograms and urinalysis were normal in GF SW mice, but serum cholesterol was 440 

elevated, and serum glucose was positively related to increasing age  441 

Of the 23 GF and 6 SPF SW mice evaluated for CBC, 9 female and 7 male GF SW mice 442 

had gallstones, while only 1 female SPF SW mouse showed gallstones.  There were no 443 

statistically significant differences in CBC analytes related to presence of gallstones, 444 

microbial status, age, sex or body weight in SW mice, and all analytes were comparable 445 

to reference values (Table 4) (14, 21).   446 

No statistically significant differences in serum chemistry analytes analyzed by 447 

IDEXX from 26 GF SW and 9 SPF SW mice were related to presence of gallstones (GF 448 
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SW mice: n = 10 females, 6 males with gallstones; SPF SW: n = 0 with gallstones), but 449 

microbial status, age, sex and body weight had significant effect(s) (Table 5).  Serum 450 

chemistries were unremarkable except for elevated serum cholesterol in GF SW, and 451 

elevated serum glucose in GF and SPF SW mice compared to the reference values (Table 452 

5) (21, 39, 40).  Differences in serum cholesterol were related to microbial status [F(1, 453 

23) = 4.96, p<0.05], with GF SW mice (245 ± 12 mg/dL) having higher values than SPF 454 

SW mice (174 ± 28 mg/dL), controlled for presence of gallstones, age, sex and body 455 

weight.  Differences in serum glucose were related to increasing age [F(1, 29) = 15.29, 456 

p<0.001], with the effect pronounced in GF SW mice (238 ± 14 mg/dL, p<0.01; SPF SW 457 

mice: 219 ± 27 mg/dL).  The remaining differences (indirect bilirubin, alanine 458 

aminotransferase, blood urea nitrogen, phosphorus) were evaluated but not clinically 459 

meaningful, as noted in Table 5. 460 

Urine samples from GF SW mice (n = 14; 8 females, 1 male with gallstones) 461 

appeared grossly normal and were negative for bilirubin and glucose.  Urobilinogen 462 

levels were ≤ 0.2 mg/dL, which was the lowest detectable limit of the urinalysis strip.  463 

Ketonuria (5.0 to 80 mg/dL) was observed in 5 female mice, 4 of which had gallstones, 464 

and protein levels varied from none to 100 mg/dL.  Urine pH was 6.0 in all samples, and 465 

the specific gravity of 5 urine samples ranged from 1.010 to 1.025.  Urine samples from 5 466 

female SPF SW retired breeders, 2 of which had gallstones, were also negative for 467 

glucose, and were otherwise within normal clinical limits.  468 

Glucose tolerance testing in GF and SPF SW mice was normal 469 

Glucose tolerance testing of 9-month-old GF (n = 11; 5 females, 4 males with gallstones) 470 

and SPF (n = 12; 3 females, 1 male with gallstones) SW mice was normal (Figure 3).  471 
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There were no significant differences in baseline blood glucose between groups, except 472 

that GF SW males (174 ± 8 mg/dL) had slightly higher levels compared to GF SW 473 

female mice (141 ± 11 mg/dL) (p<0.05) (Figure 3).  The mean AUCs of all groups were 474 

statistically the same (Figure 3).  There was no significant difference between the body 475 

weights of the GF (48.8 ± 1.0 grams) and SPF (48.5 ± 2.0 grams) SW mice evaluated for 476 

diabetes, including by sex, though mice were obese.   477 

Additionally, there were no significant differences in serum glucose (GF SW 478 

mice: 167 ± 24 mg/dL; SPF SW mice: 210 ± 22 mg/dL) or insulin (GF SW mice: 2.6 ± 479 

0.9 ng/mL; SPF SW mice: 3.5 ± 0.8 ng/mL) levels of 9-month-old SW mice, related to 480 

presence of gallstones, microbial status, age, sex or body weight.  There was also no 481 

significant difference in HbA1c levels (GF SW mice: 4.3 ± 0.2 %; SPF SW mice: 4.1 ± 482 

0.2 %) of 12-month old SW mice (GF SW mice: n = 8; 4 females, 4 males with 483 

gallstones; SPF SW mice: n = 6; 1 female with gallstones), but increasing body weight 484 

positively related to serum glucose [F(1, 9) = 8.08, p<0.05] in SPF SW mice (162 ± 28 485 

mg/dL, p<0.05; GF SW mice: 251 ± 22 mg/dL).  Note that two HbA1c levels were below 486 

the detectable limit, so the lowest registered levels were used for statistical analysis (GF 487 

SW mouse: <3.83 %; SPF SW mouse: <3.59 %). 488 

GF SW mice developed low-grade gallbladder and portal inflammation, compared 489 

to SPF SW mice  490 

Of the 26 GF SW mice evaluated histologically, 18 mice had gallstones, though presence 491 

of gallstones had no effect on gallbladder lesion scores.  Tissue samples from SPF SW 492 

mice with gallstones were not evaluated histologically, but 12 SPF SW mice without 493 

gallstones were examined.  Compared to SPF SW mice that had none to minimal 494 
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gallbladder pathology (Figure 4E-F), GF SW mice had mild to moderate (i.e. low-grade) 495 

inflammation of the gallbladder (median: 1.0; range: 0.3-2.5; p<0.001), with 496 

mononuclear infiltrates consisting predominantly of lymphocytes, plasma cells and 497 

macrophages, with variable numbers of neutrophils and mast cells (Figure 4A-D).  Mild 498 

to moderate edema (median: 1.0; range: 0.0-2.0; p<0.05) and epithelial hyperplasia 499 

(median: 1.0; range: 0.0-2.0; p<0.01) had also developed, while hyalinosis, metaplasia 500 

(GF SW males > females; p<0.05) and dysplasia were absent or minimal (Figure 4A-D).  501 

 SPF SW mice showed no or only minimal inflammation in the liver, while GF 502 

SW mice displayed significantly higher hepatitis index scores (median: 0.5; range: 0.0-503 

4.0; p<0.05) than SPF SW mice consisting of minimal to mild mononuclear portal 504 

inflammation (median: 0.5; range: 0.0-2.0; p<0.001), minimal to mild biliary hyperplasia 505 

(associated with gallstones, p<0.05), and variable hepatocellular fatty change in a few 506 

mice.  Three GF SW mice had unrelated liver pathology, including vascular lesions and 507 

lymphoma, and hence were not used for quantitative liver lesion analysis. 508 

The pancreas of most mice was normal with adequate size and distribution of 509 

islets.  However, in a few mice, there was some segmental lobular reduction in islet 510 

size/number, and small perivascular and periductal mononuclear cellular aggregates in 511 

one or two foci, with or without intra-islet infiltration.  The kidneys of a majority of GF 512 

and SPF SW mice contained variable degrees of background pathological changes 513 

consistent with lymphoma and glomerulonephritis/nephropathy.  Of those mice evaluated 514 

histologically, GF SW mice (13.0 ± 1.0 months old) were older than SPF SW mice (9.5 ± 515 

0.3 months old) (p<0.05), but body weights were the same. 516 
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Aged GF and SPF SW mice had decreased basal activity and altered agonist-517 

induced activation of the gallbladder smooth muscle 518 

Gallbladder smooth muscle activity can be assessed by evaluating Ca2+ transients under 519 

resting conditions and in response to agonist application.  Ca2+ flashes correspond to 520 

synchronous smooth muscle action potentials, which are initiated by interstitial cells of 521 

Cajal in the gallbladder, and Ca2+ waves are transient increases in Ca2+ release from 522 

intracellular stores (2, 3, 26).  Gallbladder smooth muscle activity was evaluated in 4 10-523 

month-old female GF SW mice with gallstones and 4 age-matched female SPF SW mice, 524 

1 with gallstones.  Basal activity of both aged GF and SPF SW mouse gallbladder smooth 525 

muscle was quiescent, with only occasional Ca2+ waves observed; however, carbachol 526 

induced rhythmic, synchronized Ca2+ flashes were present in 3 of 4 preparations from 527 

both groups (Figure 5).  The frequencies of the agonist-induced flashes in aged GF (0.32 528 

± 0.06 Hz) and SPF (0.42 ± 0.01 Hz) SW mice were comparable, but were slower than 529 

the Ca2+ flash frequencies observed in 7-10-week-old SPF SW mice (0.63 ± 0.02 Hz; 530 

p<0.05) 2-10 min after the application of the agonist.  In young SPF SW mice, the peak 531 

flash frequency in response to carbachol occurred within 2-10 min, and this was also 532 

observed in aged SPF SW mice.  However, in 2 of the 3 responsive aged GF SW mice, 533 

the peak in flash frequency was not reached until 15-18 min. 534 

GF SW mice demonstrated impaired gallbladder emptying in response to CCK  535 

GF (n = 19; 7 females, 8 males with gallstones) and SPF (n = 15; 1 female, 3 males with 536 

gallstones) SW mice were evaluated for responsiveness to exogenous CCK by 537 

determination of % gallbladder emptying through comparison of gallbladder volumes to 538 

mice receiving no CCK (GF SW mice: n = 18; 7 females, 9 males with gallstones; SPF 539 
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SW mice: n = 16; 0 females, 5 males with gallstones).  Data from control mice injected 540 

with sterile PBS or no injection were combined into one group after it was determined 541 

that gallbladder volumes were identical between control groups.   542 

Significant differences in gallbladder volume determined by ANCOVA were 543 

unrelated to presence of gallstones, age or body weight, but related to microbial status 544 

[control mice: F(1, 29) = 35.82, p<0.0001; experimental mice: F(1, 29) = 31.60, 545 

p<0.0001] and sex [control mice: F(1, 29) = 8.82, p<0.01] (Figure 6).  GF SW mice 546 

showed greater gallbladder volumes in both CCK dose groups (control mice: 170.1 ± 547 

10.5 µL; experimental mice: 142.4 ± 12.4 µL), compared to SPF SW mice (control mice: 548 

64.3 ± 11.3 µL; experimental mice: 15.0 ± 14.7 µL) (Figure 6).  When analysis was 549 

stratified by microbial status, a difference in gallbladder volume in GF SW controls due 550 

to sex was found to be non-significant, whereas a significant effect was maintained in 551 

SPF SW controls (p<0.0001), with females (87.3 ± 15.4 µL) possessing greater 552 

gallbladder volumes than males (43.8 ± 11.5 µL) (Figure 6).   553 

No significant difference was found in gallbladder volume related to CCK dose 554 

group in GF SW mice, but there was a difference in SPF SW mice (p<0.0001), where 555 

SPF SW mice receiving CCK (15.0 ± 14.7 µL) showed lower gallbladder volumes than 556 

mice in the control group (64.3 ± 11.3 µL)  (Figure 6).  Compared to SPF SW mice, GF 557 

SW mice exhibited substantially reduced gallbladder emptying in response to CCK; GF 558 

SW female mice demonstrated 29.0% emptying compared to 89.0% emptying in SPF SW 559 

female mice, and only 1.2% emptying occurred in GF SW males, with 53.4% emptying 560 

in SPF SW males (Figure 6). 561 
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SW mice showed no evidence of induced enterohepatic cycling of unconjugated 562 

bilirubin 563 

GF (n = 27; 18 females, 8 males with gallstones) and SPF (n = 22; 3 females, 1 male with 564 

gallstones) SW mice were evaluated for EHC of UCB by determination of bilirubin 565 

concentrations (µM), bilirubin secretion rates (nmol/hr) and % UCB in the hepatic bile. 566 

Significant differences were unrelated to presence of gallstones or body weight, but 567 

related to microbial status [conjugated bilirubin concentration: F(1, 43) = 11.66, p<0.01], 568 

age [UCB concentration: F(1, 43) = 6.12, p<0.05; UCB secretion rate: F(1, 43) = 4.39, 569 

p<0.05; inverse relationships], and sex [conjugated bilirubin concentration: F(1, 43) = 570 

14.38, p<0.001; % UCB: F(1, 43) = 13.28, p<0.001] (Figure 7).  GF SW mice had lower 571 

conjugated bilirubin concentrations (87.6 ± 16.3 µM) compared to SPF SW mice (193.0 572 

± 19.0 µL) (Figure 7A).   573 

When analysis was stratified by microbial status, differences in % UCB due to sex 574 

in GF SW mice, and differences in UCB concentration and secretion rate due to age in 575 

GF and SPF SW mice were found non-significant.  Significant effects were maintained 576 

on conjugated bilirubin concentrations in both GF (p<0.01) and SPF (p<0.05) SW mice, 577 

with females (GF SW mice: 111.4 ± 16.8 µM; SPF SW mice: 216.8 ± 20.7 µM) having 578 

greater conjugated bilirubin concentrations than males (GF SW mice: 33.7 ± 22.8 µM; 579 

SPF SW mice: 139.1 ± 22.4 µM).  Likewise, % UCB in SPF SW mice was greater in 580 

males (females: 0.34 ± 0.09 %; males: 0.66 ± 0.10 %; p<0.05) (Figure 7A,C). 581 

 582 

DISCUSSION 583 
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This study documented gallstones morphologically and compositionally consistent with 584 

“black” pigment gallstones of humans in 84% of females and 65% of males, for an 585 

overall prevalence of 75% (169/224) in GF SW mice (23, 33).  The classic etiologic 586 

associations between “black” pigment gallstones in humans and chronic hemolysis and 587 

ineffective erythropoiesis were not detected in GF SW mice, as hemograms reflected 588 

normal erythroid values and morphology.  Likewise, GF SW mice did not have increased 589 

concentration, secretion rate or % of UCB in hepatic bile, showing a lack of EHC of 590 

UCB.  Markedly enlarged gallbladders were observed in GF SW mice with impaired 591 

CCK-induced gallbladder emptying and inactive Ca2+ responses, consistent with an 592 

inherent abnormal gastrointestinal physiology in GF mice characterized by slower 593 

intestinal transit (9, 34, 35, 50, 59).  The combination of impaired responsiveness to 594 

CCK, weak basal smooth muscle activity and excess sediment may have contributed to 595 

biliary stasis, though a strictly mechanical effect on gallbladder motility due to presence 596 

of gallstones is highly unlikely, as GF SW mice with and without gallstones had enlarged 597 

fasting gallbladders and impaired gallbladder emptying in response to CCK.  Exposure to 598 

gut microbiota also appeared to protect against the formation of “black” pigment 599 

gallstones, as only 30 of 128 SPF SW mice developed gallstones (23%).  Our findings 600 

suggest genetic, age, sex and body weight predispositions, and impaired gallbladder 601 

motility, along with a microbiota-associated protective component to the pathogenesis of 602 

“black” pigment gallstone formation in SW mice.  603 

The apparent genetic predisposition and age related increases in prevalence of 604 

“black” pigment gallstones in GF SW mice are similar to the epidemiology of pigment 605 

gallstone disease in humans (5, 32).  In humans, genetic factors may be responsible for at 606 
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least 25% of symptomatic gallstone disease, although the true role of heredity is likely 607 

underestimated due to undetected asymptomatic prevalence (22, 32, 46).  SW mice are an 608 

outbred stock with a long history of experimental study since 1932; however, a known 609 

genetic predisposition to “black” pigment gallstones in either the GF or SPF status has 610 

not been noted (6).  Given that pigment gallstones have only been observed in our colony 611 

of GF SW mice, and not in 3 other strains of GF mice on distinct genetic backgrounds, 612 

the mechanism(s) underlying formation in SW mice may involve one or more 613 

spontaneous mutations affecting gastrointestinal physiology, glucoregulatory function or 614 

lipopigment metabolism.   615 

Specifically, physiologically important mutations or altered regulation may have 616 

occurred in genes of the gut-liver axis, such as fibroblast growth factor 15 (FGF15) and 617 

CCK, which regulate gallbladder filling and emptying, respectively (8, 11, 37).  A recent 618 

study established a mechanism in GF SW mice whereby increased tauro-beta-muricolic 619 

acid acts as a naturally occurring farnesoid X receptor (FXR) antagonist, with subsequent 620 

downregulation of FGF15 (42).  In a non-sterile gut, bile acids are known to induce 621 

FGF15 synthesis and suppress CCK secretion, with FGF15 opposing actions of CCK on 622 

the gallbladder (8, 42).  It has been previously shown that GF mice have a lower 623 

concentration of CCK in the intestinal tract and delayed intestinal transit (34, 35, 50).  624 

One of the roles of the commensal gut microbiota may be to increase CCK concentration, 625 

in order to maintain intestinal transit to promote colonization resistance to pathogenic 626 

bacteria (34, 35, 50).  The interaction between FGF15 and CCK in GF mice has not been 627 

studied directly, but it is likely that the above described downregulation of FGF15 and 628 
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the lower concentration of CCK in the intestinal tract in GF mice both play a role in 629 

gallbladder dysfunction (34, 35, 42).  630 

Furthermore, our study showed that female GF SW mice are 3 times more likely 631 

to develop pigment gallstones than males.  Both GF and SPF SW female mice had greater 632 

fasting gallbladder volumes compared to males, which may be due to the inhibitory effect 633 

of progesterone on the contractility of gastrointestinal smooth muscle, including the 634 

gallbladder, acting through multiple signaling pathways (24).  Gallbladder stasis can 635 

occur in pregnant women and is due to high progesterone increasing fasting residual 636 

gallbladder volume and decreased emptying capacity (24). 637 

Evaluation of spontaneous and agonist-activated Ca2+ transients (increases in 638 

intracellular [Ca2+]) in gallbladder smooth muscle has previously been validated as a 639 

useful approach for evaluating muscle activity (2, 3).  Normal gallbladder smooth muscle 640 

activity is typically associated with rhythmic, spontaneous Ca2+ flashes that correspond to 641 

action potentials occurring simultaneously in all cells of a muscle bundle, and are used as 642 

an index of basal smooth muscle tone of the gallbladder (2, 3).  Additionally, transient, 643 

spontaneous Ca2+ waves represent Ca2+ release from inositol triphosphate channels (2).  644 

Aged GF and SPF SW mice both had deficits in basal and agonist-induced gallbladder 645 

smooth muscle activity, compared to young SPF SW mice.  Defects in gallbladder 646 

muscle function may reflect oxidative stress damage observed with older age, among 647 

other factors, and promote formation of a small nucleus of precipitated calcium 648 

bilirubinate, the principal component of “black” pigment gallstones, with subsequent 649 

growth by accretion (2, 11, 20).  Furthermore, free radical attack of singlet oxygen may 650 

have contributed to polymerization and oxidation of calcium bilirubinate, wherein free 651 
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radical signal amplitude likely generated from UCB was linearly correlated with pigment 652 

content of gallstones (4, 13, 54).  653 

Irrespective of grossly observable gallstones, GF SW mice developed mild to 654 

moderate gallbladder inflammation, edema, and epithelial hyperplasia, and mild portal 655 

inflammation, compared to SPF SW mice.  Gallbladder inflammation may have resulted 656 

from the toxic or immune response-modulating properties of UCB, and/or from free 657 

radical-mediated oxidative stress (43, 54).  Cholecystitis in cholesterol gallstone disease 658 

has been associated with impaired gallbladder motility, including altered CCK-induced 659 

smooth muscle contraction, but has not been found to contribute to gallbladder stasis in 660 

“black” pigment gallstone formation (16, 31, 37, 51).  We reason that the observed mild 661 

pathology in the gallbladders of GF SW mice both contributed to and resulted from 662 

impaired gallbladder motility. 663 

The increased prevalence of “black” pigment gallstones, particularly in older and 664 

heavier female GF SW mice, is consistent with a previous report by our group.  665 

Gallstones lacking cholesterol content were found as an incidental finding in aged, obese 666 

female SPF SW mice that were part of a breeding colony used to characterize a male-667 

predominant SPF SW mouse model of non-insulin dependent diabetes mellitus (29).  668 

Type II diabetes mellitus was not substantiated in GF or SPF SW mice by normal glucose 669 

tolerance testing, mean fasting serum glucose levels below 300 mg/dL, an absence of 670 

glucosuria, and normal insulin and HbA1c levels (29, 39, 40).  Although, there was a 671 

positive relationship between serum glucose and age in GF SW mice.  Hyperglycemia 672 

inhibits bile secretion from the liver and impairs gallbladder contraction, leading to bile 673 

stasis and gallstone formation, and is augmented by diabetic autonomic neuropathy (5, 674 
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12, 37, 54).  One study found that diabetic Taiwanese were twice as likely to develop 675 

presumed pigment gallstones, compared to non-diabetic patients (5, 15).  Increased risk 676 

for both pigment and cholesterol gallstones in humans with diabetes mellitus is most 677 

likely due to metabolic syndrome, and is confounded by age, obesity and a family history 678 

of gallstones (5, 45, 46).  Epigenetic factors, specifically variations in gut microbiota, 679 

have been causally linked to the development of diabetes (1, 16, 28).  A potential genetic 680 

predisposition to diabetes and/or a tendency for development of metabolic syndrome in 681 

SW mice, combined with differences in exposure to microbes, all likely play a role in the 682 

observed variations in glucoregulatory function and lipid metabolism in SW mice.  683 

As in cholesterol gallstone disease, cholesterol may also play a role in the 684 

observed increased fasting gallbladder volumes and impaired CCK-induced gallbladder 685 

emptying in GF SW mice documented in this study.  Biliary hypersecretion of cholesterol 686 

can cause gallbladder immotility, and prolonged intestinal transit may allow for 687 

hyperabsorption of cholesterol from the gut (27, 36, 37, 58, 60, 61).  Cholesterol 688 

incorporation into the sarcolemmal membranes of gallbladder and intestinal smooth 689 

muscle cells decreases turnover of CCK-1R, the cognate receptor of CCK-8, with 690 

subsequent interrupted ligand-receptor interaction, thus impairing muscle contraction 691 

through blocked CCK signaling (10, 36, 37, 58, 61).  This relationship has been 692 

elucidated with a targeted deletion of CCK-1R in mice showing increased gallstone 693 

susceptibility, delayed small intestinal transit and increased biliary cholesterol secretion, 694 

and more recently in CCK knockout mice with enlarged fasting gallbladder volumes and 695 

impaired postprandial response of the gallbladder (57, 58, 61).  Also, increased 696 
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susceptibility to cholesterol gallstones in GF mice compared to mice with indigenous 697 

microbiota was related to larger gallbladders and gallbladder inflammation (16).  698 

One study using human subjects found that patients with “black” pigment 699 

gallstones had moderately impaired gallbladder motility characterized by delayed and 700 

incomplete postprandial emptying, but these patients had normal fasting gallbladder 701 

volumes and biliary cholesterol saturation indices (36).  Irrespective that Portincasa et al. 702 

reported human patients with “black” pigment gallstones do not have excess biliary 703 

cholesterol, this mechanism is still worthwhile to explore in GF SW mice with known 704 

delayed intestinal transit and increased serum cholesterol levels (36, 37).  The hypomotile 705 

gallbladder of GF SW mice may not only be prolonging the residence time of UCB, but 706 

also of cholesterol (36, 58).  Defective interaction of CCK with CCK-1R may also 707 

explain why GF SW mice did not respond to exogenously administered CCK as robustly 708 

as SPF SW mice.  Another possibility is that, because of the lower CCK concentration in 709 

the small intestine of GF mice, receptors may be present in lower numbers.  A 710 

combination of decreased intestinal concentration of CCK and density of CCK-1 711 

receptors, from cholesterol incorporation in the gallbladder and/or receptor 712 

downregulation, may both contribute to the major defects observed in gallbladder 713 

motility and subsequent “black” pigment gallstone formation in GF SW mice. 714 

This study documents a systematic and detailed description of a new animal 715 

model of “black” pigment gallstone formation, and suggests additional experiments to 716 

elucidate the molecular mechanism(s) that are responsible for cholelithogenesis.  Further 717 

studies could probe the possibility of biliary cholesterol supersaturation as a factor in the 718 

observed impaired gallbladder motility in GF SW mice.  This work could involve 719 
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complete hepatic and gallbladder bile chemistry profiles of GF and SPF SW mice, tests to 720 

determine cholesterol content in the gallbladder smooth muscle, and gene expression 721 

analyses, most importantly of CCK-1R.  Future experiments should also explore the 722 

altered gut-liver axis in a sterile gut, specifically the interplay of FGF15 and CCK on 723 

gallbladder function, and the gallstone protective components of the commensal 724 

microbiota. 725 

We theorize that features of GF physiology, including decreased intestinal CCK 726 

concentration and delayed intestinal transit, as well as an apparent genetic predisposition 727 

of the SW stock, contributed to the spontaneous formation of “black” pigment gallstones 728 

in GF SW mice.  It is likely that histomorphological alterations in the gallbladder, 729 

progesterone in females, increasing serum glucose with age, obesity and a predisposition 730 

to diabetes and/or metabolic syndrome, and elevated serum cholesterol all played a role 731 

in the increased fasting residual gallbladder volume, weak basal gallbladder smooth 732 

muscle activity and impaired CCK-induced gallbladder emptying.  GF SW mice should 733 

continue to be a valuable animal model to study impaired gallbladder motility as one 734 

contributing cause of “black” pigment gallstones in humans in the absence of 735 

hyperbilirubinbilia. 736 
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Figure 1.  Gallbladders of germfree (GF) Swiss Webster (SW) mice were markedly 957 

enlarged and 75% contained gallstones grossly and microscopically consistent with 958 

“black” pigment gallstones.  Panel A: Twelve-month-old female GF SW mouse with 959 

dilated gallbladder containing gallstones (arrow). B: Excised gallbladder with gallstones 960 

from a 12-month-old female GF SW mouse.  Gallstones were present in varying number, 961 

size and color, but were often dark brown to black, as pictured here.  Black bar indicates 962 

1 cm.  C: Eppendorf tube containing gallstones and gallbladder bile from a 12-month-old 963 

female GF SW mouse.  D: Gallbladder volumes (µL) and E: gallbladder bile pHs of SW 964 

mice were reported as adjusted mean ± standard error, with age and body weight fixed at 965 

their means (n = 41; mean age: 11.4 months; mean body weight: 44.9 grams).  Asterisks 966 

indicate level of significance of differences in gallbladder volume and bile pH, related to 967 

microbial status, with *** p<0.001, ** p<0.01; note that the gallbladder bile samples of 968 

GF SW mice were acidic.  Statistically significant differences in analytes related to sex in 969 

the overall model were noted (#), and if also found significant when stratified by 970 

microbial status, were marked by a difference in letters (a-b; c-d) (gallbladder volume: 971 

GF SW mice: p<0.01, SPF SW mice: p<0.001).  F: Gallstones and sediment in 972 

gallbladder bile from a 15-month-old female GF SW mouse at 100x magnification, under 973 

direct light.  G: Direct light microscopy of a gallstone from a 15-month-old female 974 

specific pathogen-free (SPF) SW mouse viewed at 200x magnification.  H:  Polarized 975 

light microscopy at 40x magnification of gallstones present on the mucosal surface of the 976 

gallbladder of an 11-month-old GF SW mouse; one gallstone appears to be broken.  I: 977 

High magnification view (100x) of a gallstone in gallbladder bile from an 11-month-old 978 

GF SW mouse viewed under polarized light.     979 
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 980 

Figure 2.  Electron paramagnetic resonance (EPR) spectra of gallstones and 981 

gallbladder bile.  Top Panel: Bilirubin (A) and gallstone samples from germfree (GF) 982 

(B) and specific pathogen-free (SPF) (C) Swiss Webster (SW) mice, highlighting the 983 

organic radical observed at g = 2.  A: A sample of commercial bilirubin (10 µM in 984 

Chelex-treated Milli-Q water) contained a derivative EPR signal centered at g = 2.00.  985 

Additional features were observed at g = 2.04 and g = 1.98.  B: EPR spectrum of 986 

gallstones obtained from GF SW mice.  Spectrum B contained a derivative feature 987 

centered at g = 2.0 attributed to bilirubin radicals.  An additional feature was observed at 988 

g = 1.98.  Multiple additional features that display weak signal intensities were observed 989 

at lower field and may indicate the presence of additional EPR-detectable species in the 990 

sample.  C: EPR spectrum of gallstones from one SPF SW mouse.  The spectrum is 991 

scaled by 5x to facilitate comparison with spectra A and B.  A derivative feature centered 992 

at g = 2.00 was also observed, and multiple weak features were present in the baseline.  993 

Instrument conditions: temperature, 5 K; microwaves, 20.1 µW at 9.4 GHz; modulation 994 

amplitude, 1 mT.  Middle Panel: EPR spectra of gallstones and gallbladder bile from GF 995 

SW mice.  D: Spectrum of twice washed gallstones.  E: Spectrum of undiluted 996 

gallbladder bile.  F: Spectrum of gallstones washed five times.  Instrument conditions: 997 

temperature, 20 K; microwaves, 0.2 mW at 9.4 GHz.  Bottom Panel: Expanded view of 998 

the EPR signals in the g = 2 region from spectrum E.  The Mn2+ and Cu2+ signals were 999 

obtained from standards of each metal ion (prepared in Milli-Q water).  The Mn2+ + Cu2+ 1000 

spectrum was generated through a linear combination of the Mn2+ and Cu2+ standard 1001 

spectra.  Because it was necessary to record the spectra under non-ideal spectroscopic 1002 
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conditions (higher power) to observe and maximize signals for the transition metal ions, 1003 

the radical signal at g ~ 2 is saturated, resulting in loss of the characteristic derivative 1004 

signal that is apparent under ideal spectroscopic conditions in the Top and Middle Panels.  1005 

Instrument conditions: temperature, 20 K; microwaves, 0.2 mW at 9.4 GHz. 1006 

 1007 

Figure 3.  Normal glucose tolerance testing results from 9-month-old germfree (GF) 1008 

SW (Swiss Webster) and specific pathogen-free (SPF) SW mice.  The mean area 1009 

under the curves (AUC) of all groups compared were statistically the same, including not 1010 

pictured SPF SW mice with or without gallstones, and SPF SW females or males.  Panel 1011 

A: GF SW mice (n = 11; 79.8 ± 6.9) compared to SPF SW mice (n = 12; 93.8 ± 6.9).  B: 1012 

GF SW mice with gallstones (n = 9; 80.5 ± 7.9) compared to GF SW mice without 1013 

gallstones (n = 2; 77.0 ± 15.0).  C: GF SW females (n = 6; 84.2 ± 9.8) compared to GF 1014 

SW males (n = 5; 74.6 ± 9.9).  Mean baseline blood glucose values were significantly 1015 

higher in GF SW male mice, compared to GF SW female mice, * p<0.05.   1016 

 1017 

Figure 4.  H&E images of the range of gallbladder lesions in germfree (GF) Swiss 1018 

Webster (SW) (A - D) compared to specific pathogen-free (SPF) SW (E & F) mice.  1019 

Panel A: Gallbladder of an 8-month-old male GF SW mouse with gallstones, showing 1020 

mild sub-epithelial inflammation, edema and epithelial hyalinosis (intensely eosinophilic 1021 

granular hyaline-like cytoplasmic alteration).  B: Gallbladder of an 8-month-old female 1022 

GF SW mouse without gallstones showing moderate mixed (lymphocytic and 1023 

granulocytic) inflammation of the epithelium and stroma with minimal papillary 1024 

epithelial projections.  C: Low magnification image of a gallbladder of an 8-month-old 1025 
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male GF SW mouse without gallstones, showing prominent papillomatous epithelial 1026 

hyperplasia, scattered inflammatory cells and edema in the sub-epithelial space/stroma.  1027 

D: Higher magnification of C, showing hyperplastic long columnar epithelium with 1028 

mostly basal oval nuclei, abundant eosinophilic to vacuolated (mucous) cytoplasm, and 1029 

an intra-glandular protein cast (arrow).  E and F: Low and high magnification images of 1030 

a gallbladder of a 10-month-old male SPF SW mouse with sparse inflammatory cells and 1031 

mild papillary epithelial hyperplasia.  Bars: A, B and F = 80 µM; C and E = 160 µM; D 1032 

= 40 µM. 1033 

 1034 

Figure 5.  Gallbladder smooth muscle activity is disrupted in aged germfree (GF) 1035 

and specific pathogen-free (SPF) Swiss Webster (SW) mice.  Ca2+ transient recordings 1036 

from pairs of gallbladder smooth muscle cells (gray and black) showing an age-related 1037 

disruption in spontaneous activity.  Gallbladder smooth muscle cells in young SPF SW 1038 

mice exhibit synchronized rhythmic Ca2+ flashes (upper left panel).  Ca2+ flash activity is 1039 

absent in 10-month-old GF and SPF SW mice (center and bottom left panels), where only 1040 

Ca2+ waves were detected.  Carbachol (3 uM) induced Ca2+ flashes in all 3 groups of 1041 

mice once peak frequency was reached (right panels; time point indicated above each 1042 

trace).    1043 

 1044 

Figure 6.  Germfree (GF) Swiss Webster (SW) mice showed impaired 1045 

cholecystokinin (CCK)-induced gallbladder emptying, compared to specific 1046 

pathogen-free (SPF) SW mice.  Gallbladder volumes (µL) of SW mice were reported as 1047 

adjusted mean ± standard error, with age and body weight fixed at their means (control 1048 
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mice: n = 34; mean age: 8.0 months; mean body weight: 55.0 grams; experimental mice: 1049 

n = 34; mean age: 8.0 months; mean body weight: 55.7 grams).  Asterisks indicate level 1050 

of significance of differences in gallbladder volumes of control and experimental mice, 1051 

related to microbial status, with **** p<0.0001.  Statistically significant differences in 1052 

gallbladder volume related to sex in the overall model were noted (#), and if also found 1053 

significant when stratified by microbial status, were marked by a difference in letters (a-1054 

b) (SPF SW mice: p<0.0001).  A difference in numbers (1-2) denotes a statistically 1055 

significant difference in gallbladder volume between SPF SW control and experimental 1056 

mice (p<0.0001). 1057 

 1058 

Figure 7.  Germfree (GF) Swiss Webster (SW) and specific pathogen-free (SPF) SW 1059 

mice were comparable in concentration, secretion rate and % of unconjugated 1060 

bilirubin (UCB) in hepatic bile.  Panel A: Bilirubin concentrations (µM), B: secretion 1061 

rates (nmol/hr) and C: % UCB of hepatic bile of SW mice were reported as adjusted 1062 

mean ± standard error, with age and body weight fixed at their means (n = 49; mean age: 1063 

11.2 months; mean body weight: 54.8 grams).  Asterisks indicate level of significance of 1064 

difference in conjugated bilirubin concentration, related to microbial status, with ** 1065 

p<0.01.  Statistically significant differences in analytes related to sex in the overall model 1066 

were noted (#), and if also found significant when stratified by microbial status, were 1067 

marked by a difference in letters (a-b; c-d) (conjugated bilirubin concentration: GF SW 1068 

mice: p<0.01, SPF SW mice: p<0.05; % UCB: SPF SW mice: p<0.05). 1069 



Mean	  ±	  SE Range Mean	  ±	  SE Range
GF	  SW	  Mice
	  	  	  	  	  All 224 75% 10.7	  ±	  0.2 5	  -‐	  22 48.6	  ±	  0.6 28.6	  -‐	  75.6

	  	  	  	  	  Gallstones 169 11.1	  ±	  0.2 5	  -‐	  22 49.8	  ±	  0.7 31.3	  -‐	  75.6
	  	  	  	  	  No	  Gallstones 55 9.7	  ±	  0.4 5	  -‐	  17 45.1	  ±	  1.1 28.6	  -‐	  63.8

	  	  	  	  	  Females 125 84% 11.0	  ±	  0.3 5	  -‐	  22 48.0	  ±	  0.8 28.6	  -‐	  75.6
	  	  	  	  	  Males 99 65% 10.4	  ±	  0.3 5	  -‐	  17 49.3	  ±	  0.9 29.9	  -‐	  66.7
SPF	  SW	  Mice
	  	  	  	  	  All 128 23% 10.1	  ±	  0.2 8	  -‐	  15 49.6	  ±	  0.8 28.6	  -‐	  86.8

	  	  	  	  	  Gallstones 30 10.2	  ±	  0.4 8	  -‐	  15 50.9	  ±	  1.3 40.0	  -‐	  68.6
	  	  	  	  	  No	  Gallstones 98 10.1	  ±	  0.2 8	  -‐	  15 49.1	  ±	  0.9 28.6	  -‐	  86.8

	  	  	  	  	  Females 75 20% 10.5	  ±	  0.3 8	  -‐	  15 50.3	  ±	  1.1 28.6	  -‐	  86.8
	  	  	  	  	  Males 53 28% 9.6	  ±	  0.3 8	  -‐	  14 48.6	  ±	  1.0 33.3	  -‐	  63.9

Table 1. Demographic profile of germfree (GF) and specific pathogen-‐free (SPF) Swiss Webster
(SW)	  mice

n Gallstone	  
PrevalenceMicrobial	  Status

a	  Eight	  body	  weight	  values	  not	  provided.

Age	  (months) a	  Body	  Weight	  (grams)



OR 95%	  CI p-‐value
a	  Multivariate	  Full	  Model	  (n	  =	  344) <	  0.0001
	  	  	  	  	  Microbial	  Status
	  	  	  	  	  	  	  	  	  	  GF 11.44	  (10.04) 6.57	  -‐	  19.93	  (6.03	  -‐	  16.71) <	  0.001	  (<	  0.001)
	  	  	  	  	  	  	  	  	  	  SPF Reference	  Group
	  	  	  	  	  Age	  (months) 1.14	  (1.16) 1.04	  -‐	  1.26	  (1.07	  -‐	  1.27) <	  0.01	  (<	  0.01)
	  	  	  	  	  Sex
	  	  	  	  	  	  	  	  	  	  Female 1.55	  (1.39) 0.92	  -‐	  2.60	  (0.91	  -‐	  2.12) 0.10	  (0.13)
	  	  	  	  	  	  	  	  	  	  Male Reference	  Group

	  	  	  	  	  b	  Body	  Weight	  (grams) 1.05	  (1.03) 1.02	  -‐	  1.09	  (1.01	  -‐	  1.06) <	  0.01	  (<	  0.05)
c	  Multivariate	  Reduced	  Model	  (n	  =	  344) <	  0.0001
	  	  	  	  	  Microbial	  Status 10.98 6.36	  -‐	  18.98 <	  0.001
	  	  	  	  	  Age	  (months) 1.15 1.05	  -‐	  1.27 <	  0.01

	  	  	  	  	  b	  Body	  Weight	  (grams) 1.05 1.02	  -‐	  1.08 <	  0.01

Table 2. Logistic regression models of the relationship between microbial status [germfree (GF),
specific	  pathogen-‐free	  (SPF)]	  of	  Swiss	  Webster	  (SW)	  mice	  and	  presence	  of	  gallstones	  

a In multivariate full model, odds ratios (ORs), 95% confidence intervals (CIs) and p-‐values are
reported	  as	  adjusted	  (crude).
b	  Eight	  body	  weight	  values	  not	  provided.
c	  Favored	  model;	  excludes	  sex	  found	  non-‐significant	  by	  likelihood-‐ratio	  chi-‐squared	  test.



OR 95%	  CI p-‐value
a	  Multivariate	  Full	  Model	  (n	  =	  220) <	  0.0001
	  	  	  	  	  Age	  (months) 1.23	  (1.22) 1.08	  -‐	  1.40	  (1.08	  -‐	  1.39) <	  0.01	  (<	  0.01)
	  	  	  	  	  Sex
	  	  	  	  	  	  	  	  	  	  Female 3.16	  (2.87) 1.58	  -‐	  6.29	  (1.53	  -‐	  5.40) <	  0.01	  (<	  0.01)
	  	  	  	  	  	  	  	  	  	  Male Reference	  Group

	  	  	  	  	  b	  Body	  Weight	  (grams) 1.08	  (1.07) 1.04	  -‐	  1.13	  (1.03	  -‐	  1.12) <	  0.001	  (<	  0.01)

Table 3. Logistic regression model of the relationship between independent variables and
presence	  of	  gallstones	  in	  germfree	  (GF)	  Swiss	  Webster	  (SW)	  mice	  

a In multivariate full model, odds ratios (ORs), 95% confidence intervals (CIs) and p-‐values are
reported as adjusted (crude). Multivariate full model is favored model; no covariates found non-‐
significant	  by	  likelihood-‐ratio	  chi-‐squared	  test.
b	  Four	  body	  weight	  values	  not	  provided.



Female	  (n=11) Male	  (n=12) Female	  (n=3) Male	  (n=3)

White	  Blood	  Cell	  Count	  (103/ul) 4.9	  ±	  0.8 4.3	  ±	  0.7 4.0	  ±	  1.4 4.3	  ±	  1.4 5.1	  -‐	  11.6
	  	  	  	  	  Neutrophils 1.2	  ±	  0.3 1.7	  ±	  0.2 1.2	  ±	  0.5 1.7	  ±	  0.5 0.3	  -‐	  4.3
	  	  	  	  	  Bands 0.1	  ±	  0.0 0.0	  ±	  0.0 0.2	  ±	  0.1 0.1	  ±	  0.1 none	  to	  few
	  	  	  	  	  Lymphocytes 2.6	  ±	  0.5 2.5	  ±	  0.5 2.6	  ±	  0.9 2.5	  ±	  1.0 3.2	  -‐	  8.7
	  	  	  	  	  Monocytes 0.1	  ±	  0.0 0.0	  ±	  0.0 0.0	  ±	  0.0 0.0	  ±	  0.0 0.0	  -‐	  0.3
	  	  	  	  	  Eosinophils 0.0	  ±	  0.0 0.0	  ±	  0.0 0.0	  ±	  0.0 0.0	  ±	  0.0 0.1	  -‐	  0.4
	  	  	  	  	  Basophils 0.0	  ±	  0.0 0.0	  ±	  0.0 0.0	  ±	  0.0 0.0	  ±	  0.0 0.0	  -‐	  0.2

Red	  Blood	  Cell	  Count	  	  (106/uL) 10.3	  ±	  0.3 10.7	  ±	  0.3 9.7	  ±	  0.5 10.2	  ±	  0.6 7	  -‐	  11
Hematocrit	  (%) 48.8	  ±	  1.5 49.7	  ±	  1.4 51.9	  ±	  2.6 52.7	  ±	  2.7 35	  -‐	  52
Hemoglobin	  (g/dL) 13.6	  ±	  0.3 14.2	  ±	  0.3 13.9	  ±	  0.6 14.5	  ±	  0.6 10	  -‐	  17

Platelet	  Count	  (103/uL) 1239	  ±	  147 1426	  ±	  131 1417	  ±	  246 1604	  ±	  255 900	  -‐	  1600
Mean	  Corpuscular	  Volume	  (fL) 47.7	  ±	  1.0 46.4	  ±	  0.9 53.3	  ±	  1.8 52.0	  ±	  1.9 45	  -‐	  55
Mean	  Corpuscular	  Hemoglobin	  (pg/cell) 13.3	  ±	  0.3 13.2	  ±	  0.2 14.3	  ±	  0.4 14.2	  ±	  0.5 15	  -‐	  18
MCH	  Concentration	  (g/dL) 27.9	  ±	  0.6 28.5	  ±	  0.6 26.8	  ±	  1.1 27.4	  ±	  1.1 30	  -‐	  38

Reference	  
Values

There were no statistically significant differences in analytes determined by ANCOVA related to presence of gallstones,
microbial status, age, sex or body weight. GF SW and SPF SW data represent adjusted mean ± standard error, where age
and body weight are fixed at their means (n = 29; mean age: 11.1 months; mean body weight: 44.7 grams). Of those
analyzed, 16 GF SW mice and one SPF SW mouse had gallstones. Reference data for SW mice are not published, and
reference	  intervals	  provided	  represent	  normative	  data	  for	  the	  mouse,	  and	  are	  not	  specific	  for	  strain,	  sex,	  or	  age	  (14,	  21).

Table	  4.	  	  Complete	  blood	  count	  analytes	  from	  germfree	  (GF)	  and	  specific	  pathogen-‐free	  (SPF)	  Swiss	  Webster	  (SW)	  mice
GF	  SW	  Mice SPF	  SW	  Mice

Complete	  Blood	  Count



Female	  (n=11) Male	  (n=15) Female	  (n=4) Male	  (n=5)
Lipid	  &	  Carbohydrate	  Metabolism

	  	  	  	  	  2*	  Cholesterol	  (mg/dL) 221.5	  ±	  18.2 264.7	  ±	  14.9 150.3	  ±	  28.8 193.5	  ±	  32.1 114	  ±	  56

	  	  	  	  	  3a***	  Glucose	  (mg/dL) 226.0	  ±	  22.3 246.4	  ±	  16.4 207.7	  ±	  27.1 228.1	  ±	  32.0 112	  ±	  38
Hepatic	  Function
	  	  	  	  	  Total	  Bilirubin	  (mg/dL) 0.0	  ±	  0.0 0.1	  ±	  0.0 0.0	  ±	  0.0 0.1	  ±	  0.0 0.4	  ±	  0.2
	  	  	  	  	  Direct	  Bilirubin	  (mg/dL) 0.0	  ±	  0.0 0.0	  ±	  0.0 0.0	  ±	  0.0 0.0	  ±	  0.0 N/A

	  	  	  	  	  3a*;	  5a**	  Indirect	  Bilirubin	  (mg/dL) 0.0	  ±	  0.0 0.0	  ±	  0.0 0.0	  ±	  0.0 0.0	  ±	  0.0 N/A
	  	  	  	  	  Albumin	  (g/dL) 3.1	  ±	  0.1 3.1	  ±	  0.1 2.8	  ±	  0.2 2.8	  ±	  0.2 N/A
	  	  	  	  	  Globulin	  (g/dL) 3.2	  ±	  0.2 3.3	  ±	  0.1 3.1	  ±	  0.3 3.3	  ±	  0.3 N/A
	  	  	  	  	  Total	  Protein	  (g/dL) 6.3	  ±	  0.2 6.5	  ±	  0.2 5.8	  ±	  0.3 6.0	  ±	  0.4 4.4	  ±	  1.1

	  	  	  	  	  2**	  Alanine	  Aminotransferase	  (IU/L) 45.7	  ±	  9.0 35.4	  ±	  7.1 91.8	  ±	  14.0 81.5	  ±	  15.7 99	  ±	  86
	  	  	  	  	  Alkaline	  Phosphatase	  (IU/L) 85.3	  ±	  7.5 71.4	  ±	  5.9 59.2	  ±	  11.7 45.3	  ±	  13.1 39	  ±	  26
	  	  	  	  	  Aspartate	  Aminotransferase	  (IU/L) 143.8	  ±	  33.2 75.9	  ±	  27.0 133.1	  ±	  52.4 65.2	  ±	  58.5 196	  ±	  133
Renal	  Function

	  	  	  	  	  2*;	  4a*	  Blood	  Urea	  Nitrogen	  (mg/dL) 17.4	  ±	  1.1 21.1	  ±	  0.9 21.5	  ±	  1.7 25.2	  ±	  1.9 38	  ±	  20
	  	  	  	  	  Creatinine	  (mg/dL) 0.2	  ±	  0.0 0.2	  ±	  0.0 0.2	  ±	  0.0 0.2	  ±	  0.0 1.1	  ±	  0.5
Electrolytes,	  Acid-‐Base	  Balance
	  	  	  	  	  Calcium	  (mg/dL) 10.1	  ±	  0.2 10.1	  ±	  0.2 10.4	  ±	  0.3 10.4	  ±	  0.3 8.9	  ±	  2.1
	  	  	  	  	  Chloride	  (mEq/L) 108.9	  ±	  1.3 111.3	  ±	  1.0 104.9	  ±	  1.8 107.4	  ±	  2.0 125	  ±	  7.2

	  	  	  	  	  4b*	  Phosphorus	  (mg/dL) 8.6	  ±	  0.5 10.1	  ±	  0.4 8.5	  ±	  0.6 10.0	  ±	  0.7 8.3	  ±	  1.5
	  	  	  	  	  Potassium	  (mEq/L) 9.6	  ±	  0.7 10.2	  ±	  0.5 8.5	  ±	  1.0 9.1	  ±	  1.1 8.0	  ±	  0.9
	  	  	  	  	  Sodium	  (mEq/L) 154.1	  ±	  2.2 157.2	  ±	  1.6 152.4	  ±	  3.0 155.6	  ±	  3.3 166	  ±	  8.6

Table	  5.	  	  Serum	  chemistry	  analytes	  from	  germfree	  (GF)	  and	  specific	  pathogen-‐free	  (SPF)	  Swiss	  Webster	  (SW)	  mice

Statistically significant differences in analytes determined by ANCOVA are noted and relate to 1 presence of gallstones, 2	  

microbial status, 3 age (direct relationship), 4 sex or 5 body weight (inverse relationship), with a GF and/or b SPF found

responsible for significant effect(s) by ANCOVA stratified by microbial status; * p<0.05, ** p<0.01, *** p<0.001. GF SW and
SPF SW data represent adjusted mean ± standard error, where age and body weight are fixed at their means (n = 35;
mean age: 12.0 months; mean body weight: 43.6 grams). Sixteen GF SW mice had gallstones, while no SPF SW mice
analyzed had gallstones. Reference data for SW mice are not published, and reference values provided represent mean ±
standard	  deviation	  obtained	  from	  adult	  male	  CD-‐1	  mice	  (21,	  39,	  40);	  N/A	  indicates	  no	  data	  available.

GF	  SW	  Mice SPF	  SW	  Mice
Serum	  Chemistry Reference	  

Values
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"Black" pigment gallstones form in sterile gallbladder bile in the presence of excess bilirubin 
conjugates from ineffective erythropoiesis, hemolysis or induced enterohepatic cycling 
(EHC) of unconjugated bilirubin. Impaired gallbladder motility is a less well-studied risk 
factor. We evaluated the spontaneous occurrence of gallstones in adult germfree (GF) and 
specific pathogen-free (SPF) Swiss Webster (SW) mice. GF SW mice were more likely to 
have gallstones than SPF SW mice, with 75% and 23% prevalence, respectively, and were 
observed predominately in heavier, older females. Gallbladders of GF SW mice were 
markedly enlarged, contained sterile "black" gallstones comprised of calcium bilirubinate 
and <1% cholesterol, and had low-grade inflammation, edema and hyperplasia. 
Hemograms were normal, but serum cholesterol was elevated in GF SW mice, and serum 
glucose levels were positively related to increasing age. Aged GF and SPF SW mice had 
deficits in gallbladder smooth muscle activity. In response to cholecystokinin (CCK), 
gallbladders of fasted GF SW mice showed impaired emptying (females: 29%; males: 1% 
emptying), whereas SPF SW females and males emptied 89% and 53% of volume, 
respectively. Bilirubin secretion rates of GF SW mice were not greater than SPF SW mice, 
repudiating an induced EHC. Gallstones likely developed in GF SW mice due to gallbladder 
hypomotility, enabled by features of GF physiology, including decreased intestinal CCK 
concentration and delayed intestinal transit, as well as an apparent genetic predisposition of 
the SW stock. GF SW mice may provide a valuable model to study gallbladder stasis as a 
cause of "black" pigment gallstones.	  


