9 research outputs found

    Clusters of Basic Amino Acids Contribute to RNA Binding and Nucleolar Localization of Ribosomal Protein L22

    Get PDF
    The ribosomal protein L22 is a component of the 60S eukaryotic ribosomal subunit. As an RNA-binding protein, it has been shown to interact with both cellular and viral RNAs including 28S rRNA and the Epstein-Barr virus encoded RNA, EBER-1. L22 is localized to the cell nucleus where it accumulates in nucleoli. Although previous studies demonstrated that a specific amino acid sequence is required for nucleolar localization, the RNA-binding domain has not been identified. Here, we investigated the hypothesis that the nucleolar accumulation of L22 is linked to its ability to bind RNA. To address this hypothesis, mutated L22 proteins were generated to assess the contribution of specific amino acids to RNA binding and protein localization. Using RNA-protein binding assays, we demonstrate that basic amino acids 80–93 are required for high affinity binding of 28S rRNA and EBER-1 by L22. Fluorescence localization studies using GFP-tagged mutated L22 proteins further reveal that basic amino acids 80–93 are critical for nucleolar accumulation and for incorporation into ribosomes. Our data support the growing consensus that the nucleolar accumulation of ribosomal proteins may not be mediated by a defined localization signal, but rather by specific interaction with established nucleolar components such as rRNA

    Cornell Chronicle Vol. 18, No. 01 (August 28, 1986)

    Full text link
    The Cornell Chronicle, a weekly news publication of Cornell University

    DNA supercoiling by gyrase is linked to nucleoid compaction

    No full text
    NatuurwetenskappeBiochemiePlease help us populate SUNScholar with the post print version of this article. It can be e-mailed to: [email protected]

    FIS and Nucleoid Dynamics upon Exit from Lag Phase

    No full text

    Reactions of Polymers

    No full text
    corecore