82 research outputs found

    Effects of High Charge Densities in Multi-GEM Detectors

    Full text link
    A comprehensive study, supported by systematic measurements and numerical computations, of the intrinsic limits of multi-GEM detectors when exposed to very high particle fluxes or operated at very large gains is presented. The observed variations of the gain, of the ion back-flow, and of the pulse height spectra are explained in terms of the effects of the spatial distribution of positive ions and their movement throughout the amplification structure. The intrinsic dynamic character of the processes involved imposes the use of a non-standard simulation tool for the interpretation of the measurements. Computations done with a Finite Element Analysis software reproduce the observed behaviour of the detector. The impact of this detailed description of the detector in extreme conditions is multiple: it clarifies some detector behaviours already observed, it helps in defining intrinsic limits of the GEM technology, and it suggests ways to extend them.Comment: 5 pages, 6 figures, 2015 IEEE Nuclear Science Symposiu

    Charge Transfer Properties Through Graphene for Applications in Gaseous Detectors

    Get PDF
    Graphene is a single layer of carbon atoms arranged in a honeycomb lattice with remarkable mechanical and electrical properties. Regarded as the thinnest and narrowest conductive mesh, it has drastically different transmission behaviours when bombarded with electrons and ions in vacuum. This property, if confirmed in gas, may be a definitive solution for the ion back-flow problem in gaseous detectors. In order to ascertain this aspect, graphene layers of dimensions of about 2x2cm2^2, grown on a copper substrate, are transferred onto a flat metal surface with holes, so that the graphene layer is freely suspended. The graphene and the support are installed into a gaseous detector equipped with a triple Gaseous Electron Multiplier (GEM), and the transparency properties to electrons and ions are studied in gas as a function of the electric fields. The techniques to produce the graphene samples are described, and we report on preliminary tests of graphene-coated GEMs.Comment: 4pages, 3figures, 13th Pisa Meeting on Advanced Detector

    Increased strontium uptake in trabecular bone of ovariectomized calcium-deficient rats treated with strontium ranelate or strontium chloride

    Get PDF
    Based on clinical trials showing the efficacy to reduce vertebral and non-vertebral fractures, strontium ranelate (SrR) has been approved in several countries for the treatment of postmenopausal osteoporosis. Hence, it is of special clinical interest to elucidate how the Sr uptake is influenced by dietary Ca deficiency as well as by the formula of Sr administration, SrR versus strontium chloride (SrCl2). Three-month-old ovariectomized rats were treated for 90 days with doses of 25 mg kg-1 d-1 and 150 mg kg-1 d-1 of SrR or SrCl2 at low (0.1% Ca) or normal (1.19% Ca) Ca diet. Vertebral bone tissue was analysed by confocal synchrotron-radiation-induced micro X-ray fluorescence and by backscattered electron imaging. Principal component analysis and k-means clustering of the acquired elemental maps of Ca and Sr revealed that the newly formed bone exhibited the highest Sr fractions and that low Ca diet increased the Sr uptake by a factor of three to four. Furthermore, Sr uptake in bone of the SrCl2-treated animals was generally lower compared with SrR. The study clearly shows that inadequate nutritional calcium intake significantly increases uptake of Sr in serum as well as in trabecular bone matrix. This indicates that nutritional calcium intake as well as serum Ca levels are important regulators of any Sr treatment

    Charge transfer properties through graphene for applications in gaseous detectors

    Get PDF
    Graphene is a single layer of carbon atoms arranged in a honeycomb lattice with remarkable mechanical and electrical properties. Regarded as the thinnest and narrowest conductive mesh, it has drastically different transmission behaviours when bombarded with electrons and ions in vacuum. This property, if confirmed in gas, may be a definitive solution for the ion back-flow problem in gaseous detectors. In order to ascertain this aspect, graphene layers of dimensions of about 2 x 2 cm(2), grown on a copper substrate, are transferred onto a flat metal surface with holes, so that the graphene layer is freely suspended. The graphene and the support are installed into a gaseous detector equipped with a triple Gaseous Electron Multiplier (GEM), and the transparency properties to electrons and ions are studied in gas as a function of the electric fields. The techniques to produce the graphene samples are described, and we report on preliminary tests of graphene-coated GEMs.UK Research & Innovation (UKRI) - Engineering & Physical Sciences Research Council (EPSRC) - EP/H020055/1 / EP/N004159/

    Neue Scheren für die Handchirurgie

    No full text

    Die “Kammtechnik” zur rasterförmigen Anklebung von spalthauttransplantaten

    No full text

    Aerosol particle chemical characteristics measured from aircraft in the lower troposphere during ACE-2

    Get PDF
    Tellus (ACE-2 Special Issue), 52B, 185-200.During the Aerosol Characterization Experiment (ACE-2), filter samples were collected aboard the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Pelican aircraft near Tenerife in June and July of 1997. The flights included constant altitude measurements in the boundary layer as well as profiles up to 3800 m providing detailed chemical information about the composition of the aerosol distribution in the lower troposphere. Three cases with different air mass origins — clean marine air, anthropogenically-influenced air from the European continent, and dust-laden air from the Sahara — were identified. The samples were analyzed by ion chromatography (IC) for ionic species, by combined thermal and optical analysis (TOA) for organic carbon, and by total reflection X-ray fluorescence (TXRF) for elemental composition. Particle composition and size distributions for the range of air masses encountered illustrate links in the chemical and microphysical characteristics of aerosol from different sources. Clean marine air masses were characterized by low particle number and mass concentrations with no detectable metals, while anthropogenically-influenced and dust-laden air had high number, mass, and trace metal concentrations. Anthropogenic sources were characterized by high concentrations of submicron particles and some Fe and Cu, whereas dust particle loadings included a significant mass of micron-sized particles and significant loadings of Fe, in addition to small amounts of Mn, Cu, and Ni. These results showed similar tracers for air mass origin as those found in other measurements of oceanic and continental air masses. Aerosol optical properties were estimated with a simplified model of the aerosol based on the measured compositions. The real and imaginary refractive indices and single scattering albedos differed significantly among the three types of aerosol measured, with clean marine aerosol properties showing the least absorption and dust-containing aerosols showing the most. There were only small differences in optical properties for the two different cases of clean marine aerosol, but some significant differences between the two dust cases. Since measurement uncertainties affect these calculations, we studied the type of mixing and the fraction of absorbing species and found the calculation was sensitive to these variations only for the dust-containing aerosol case, probably due to the small amount of water present. While the optical properties varied little with composition for clean marine and anthropogenically-influenced cases, they showed a strong dependence on variations in particle composition and mixing state for the dust-containing cases

    Total reflection x-ray fluorescence analysis of light elements under various excitation conditions

    No full text
    Total reflction x-ray fluorescence (TXRF) analysis was tested for its suitability for the photon-induced energy dispersiver analysis of light elements such as B, C, N, O, F, Na and Mg using a special spectrometer meeting the requirements for the detection of low-energy fluorescence radiation. The influence of different spectral modification devices such as a high-energy cut-off reflector and a multilayer monochromator were compared using excitation by a Cr tube and also synchrotron radiation. The effects on intensity, background and detection lilmits are compared and discussed. A new method of monitoring the x-ray beam to adjust total reflection by a CCD camera is introduced. Considerations on the penetration depth and information depth of light elements are presented
    corecore