1,222 research outputs found

    The nonlinear directional coupler. An analytic solution

    Full text link
    Linear and nonlinear directional couplers are currently used in fiber optics communications. They may also play a role in multiphoton approaches to quantum information processing if accurate control is obtained over the phases and polarizations of the signals at the output of the coupler. With this motivation, the constants of motion of the coupler equation are used to obtain an explicit analytical solution for the nonlinear coupler.Comment: 6 pages Late

    New nonlinear dielectric materials: Linear electrorheological fluids under the influence of electrostriction

    Full text link
    The usual approach to the development of new nonlinear dielectric materials focuses on the search for materials in which the components possess an inherently large nonlinear dielectric response. In contrast, based on thermodynamics, we have presented a first-principles approach to obtain the electrostriction-induced effective third-order nonlinear susceptibility for the electrorheological (ER) fluids in which the components have inherent linear, rather than nonlinear, responses. In detail, this kind of nonlinear susceptibility is in general of about the same order of magnitude as the compressibility of the linear ER fluid at constant pressure. Moreover, our approach has been demonstrated in excellent agreement with a different statistical method. Thus, such linear ER fluids can serve as a new nonlinear dielectric material.Comment: 11 page

    Phase Controlled All-Optical Switching In Rocking Filter Fibers

    Get PDF
    We demonstrate experimentally that all-optical switching of a strong beam can be controlled by the phase of a weak beam in a rocking rotator fiber

    Smoothed Analysis of Tensor Decompositions

    Full text link
    Low rank tensor decompositions are a powerful tool for learning generative models, and uniqueness results give them a significant advantage over matrix decomposition methods. However, tensors pose significant algorithmic challenges and tensors analogs of much of the matrix algebra toolkit are unlikely to exist because of hardness results. Efficient decomposition in the overcomplete case (where rank exceeds dimension) is particularly challenging. We introduce a smoothed analysis model for studying these questions and develop an efficient algorithm for tensor decomposition in the highly overcomplete case (rank polynomial in the dimension). In this setting, we show that our algorithm is robust to inverse polynomial error -- a crucial property for applications in learning since we are only allowed a polynomial number of samples. While algorithms are known for exact tensor decomposition in some overcomplete settings, our main contribution is in analyzing their stability in the framework of smoothed analysis. Our main technical contribution is to show that tensor products of perturbed vectors are linearly independent in a robust sense (i.e. the associated matrix has singular values that are at least an inverse polynomial). This key result paves the way for applying tensor methods to learning problems in the smoothed setting. In particular, we use it to obtain results for learning multi-view models and mixtures of axis-aligned Gaussians where there are many more "components" than dimensions. The assumption here is that the model is not adversarially chosen, formalized by a perturbation of model parameters. We believe this an appealing way to analyze realistic instances of learning problems, since this framework allows us to overcome many of the usual limitations of using tensor methods.Comment: 32 pages (including appendix

    All-Optical Integrated Mach-Zehnder Switching Due To Cascaded Nonlinearities

    Get PDF
    We demonstrate all-optical switching using the cascaded second order nonlinearity in a fully integrated, asymmetric Mach Zehnder interferometer implemented in lithium niobate channel waveguides. We obtained an 8:1 switching ratio

    All-optical switching in lithium niobate directional couplers with cascaded nonlinearity

    Get PDF
    We report on intensity-dependent switching in lithium niobate directional couplers. Large nonlinear phase shifts that are due to cascading detune the coupling between the coupler branches, which makes all-optical switching possible. Depending on the input intensity, the output could be switched between the cross and the bar coupler branches with a switching ratio of 1:5 and a throughput of 80%
    • …
    corecore