33 research outputs found

    Tryptophan-Accelerated Electron Flow Across a Protein−Protein Interface

    Get PDF
    We report a new metallolabeled blue copper protein, Re126W122Cu^I Pseudomonas aeruginosa azurin, which has three redox sites at well-defined distances in the protein fold: Re^I(CO)_3(4,7-dimethyl-1,10-phenanthroline) covalently bound at H126, a Cu center, and an indole side chain W122 situated between the Re and Cu sites (Re-W122(indole) = 13.1 Å, dmp-W122(indole) = 10.0 Å, Re-Cu = 25.6 Å). Near-UV excitation of the Re chromophore leads to prompt Cu^I oxidation (<50 ns), followed by slow back ET to regenerate Cu^I and ground-state Re^I with biexponential kinetics, 220 ns and 6 μs. From spectroscopic measurements of kinetics and relative ET yields at different concentrations, it is likely that the photoinduced ET reactions occur in protein dimers, (Re126W122CuI)2 and that the forward ET is accelerated by intermolecular electron hopping through the interfacial tryptophan: ^*Re//←W122←Cu^I, where // denotes a protein–protein interface. Solution mass spectrometry confirms a broad oligomer distribution with prevalent monomers and dimers, and the crystal structure of the Cu^(II) form shows two Re126W122Cu^(II) molecules oriented such that redox cofactors Re(dmp) and W122-indole on different protein molecules are located at the interface at much shorter intermolecular distances (Re-W122(indole) = 6.9 Å, dmp-W122(indole) = 3.5 Å, and Re-Cu = 14.0 Å) than within single protein folds. Whereas forward ET is accelerated by hopping through W122, BET is retarded by a space jump at the interface that lacks specific interactions or water molecules. These findings on interfacial electron hopping in (Re126W122Cu^I)^2 shed new light on optimal redox-unit placements required for functional long-range charge separation in protein complexes

    The oxidation of luteolin, the natural flavonoid dye

    No full text
    The oxidation of natural flavonoid luteolin in aqueous solution is studied by electrochemical methods, electron paramagnetic resonance (EPR), spectroelectrochemistry and separation techniques HPLC-DAD and HPLC–MS/MS. The number of electrons involved in the oxidation of luteolin depends on the presence of its dissociation forms in solution. The study explains the differences in the number of electrons presented in the literature. The overall one electron oxidation mechanism of luteolin in alkaline solution is explained by the comproportionation reaction of resulting quinone, despite the fact that quinone is formed by two electron oxidation. Then a hydroxylation takes place. The EPR spectroelectrochemical study of the semiquinone radical anion formation as well as of the reaction steps following the electron transfer during the oxidation is presented. The novelty of this contribution consists in the additional temperature controlled semi-quantitative in situ EPR spectroelectrochemical experiment of the flavonoid oxidation. The data acquired by temperature controlled in situ EPR spectroelectrochemistry supports the comproportionation/disproportionation equilibria as well as the oxidative decomposition of luteolin and shows that the formation of a pi-dimer is less probable. The oxidation products hydroxyluteolin and 3,5-dihydroxy-2-(2-oxoacetyl)phenyl-3,4-dihydroxybenzoate are not stable under ambient conditions and decompose to low molecular hydroxycompounds such as 3,4-dihydroxybenzoic acid and 2,5,7-trihydroxy-4H-1-benzopyran-4-one

    The oxidation of natural flavonoid quercetin

    No full text
    This study explains the controversies in the literature concerning the number of electrons involved in the oxidation of quercetin. This stems from inappropriate handling samples, which require strict anaerobic conditions. The redox potential of quercetin strongly depends on the pH and on the presence of dissociation forms in solution

    On the stability of the bioactive flavonoids quercetin and luteolin under oxygen-free conditions

    No full text
    The natural flavonoid compounds quercetin (3,3',4',5,7-pentahydroxyflavone) and luteolin (3',4',5,7-tetrahydroxyflavone) are important bioactive compounds with antioxidative, anti-allergic, and anti-inflammatory properties. However, both are unstable when exposed to atmospheric oxygen, which causes degradation and complicates their analytical determinations. The oxidative change of these flavonoids was observed and followed by UV-visible spectrophotometry, both in aqueous and ethanolic solutions. The distribution of the degradation products in aqueous media was monitored by LC-MS and LC-DAD analysis. The amounts of oxidative reaction products increase with the exposure time. The oxidative degradation reduces the pharmacological efficiency of these antioxidants and renders analytical determination inaccurate. The oxidative changes in flavonoid test solutions can explain the inconsistent dissociation constants reported in the literature. Dissociation constants of quercetin and luteolin were determined both by alkalimetric titration and by UV-visible spectrophotometry under deaerated conditions. The values pK (1) = 5.87 +/- 0.14 and pK (2) = 8.48 +/- 0.09 for quercetin, and pK (1) = 5.99 +/- 0.32 and pK (2) = 8.40 +/- 0.42 for luteolin were found

    Oxidation pathways of natural dye hematoxylin in aqueous solution

    No full text
    The oxidation mechanism of hematoxylin was studied in phosphate buffers and 0.1 M KCl by cyclic voltammetry and UV-Vis spectroscopy under deaerated conditions. The redox potential of hematoxylin in buffered solution strongly depends on pH. A two electron oxidation is preceded by deprotonation. The homogeneous rate of deprotonation process of hematoxylin in 0.1 M phosphate buffer is k(d) = (2.5 +/- 0.1) x 10(4) s(-1). The cyclic voltammetry under unbuffered conditions shows the distribution of various dissociation forms of hematoxylin. The dissociation constants pK(1) = 4.7 +/- 0.2 and pK(2) = 9.6 +/- 0.1 were determined using UV-Vis spectroscopy. The final oxidation product was identified by gas chromatography with mass spectrometry detection as hemathein. The distribution of oxidation products differs under buffered and unbuffered conditions. The dye degradation in natural unbuffered environment yields hemathein and hydroxyhematoxylin, which is absent in buffered solution

    Cystathionine β‐synthase deficiency in the E‐HOD registry‐part I: pyridoxine responsiveness as a determinant of biochemical and clinical phenotype at diagnosis

    Get PDF
    Cystathionine β‐synthase (CBS) deficiency has a wide clinical spectrum, ranging from neurodevelopmental problems, lens dislocation and marfanoid features in early childhood to adult onset disease with predominantly thromboembolic complications. We have analysed clinical and laboratory data at the time of diagnosis in 328 patients with CBS deficiency from the E‐HOD (European network and registry for Homocystinurias and methylation Defects) registry. We developed comprehensive criteria to classify patients into four groups of pyridoxine responsivity: non‐responders (NR), partial, full and extreme responders (PR, FR and ER, respectively). All groups showed overlapping concentrations of plasma total homocysteine while pyridoxine responsiveness inversely correlated with plasma/serum methionine concentrations. The FR and ER groups had a later age of onset and diagnosis and a longer diagnostic delay than NR and PR patients. Lens dislocation was common in all groups except ER but the age of dislocation increased with increasing responsiveness. Developmental delay was commonest in the NR group while no ER patient had cognitive impairment. Thromboembolism was the commonest presenting feature in ER patients, whereas it was least likely at presentation in the NR group. This probably is due to the differences in ages at presentation: all groups had a similar number of thromboembolic events per 1000 patient‐years. Clinical severity of CBS deficiency depends on the degree of pyridoxine responsiveness. Therefore, a standardised pyridoxine‐responsiveness test in newly diagnosed patients and a critical review of previous assessments is indispensable to ensure adequate therapy and to prevent or reduce long‐term complications

    Electrochemistry and spectroelectrochemistry of bioactive hydroxyquinolines: a mechanistic study

    No full text
    The oxidation mechanism of selected hydroxyquinoline carboxylic acids such as 8-hydroxyquinoline-7-carboxylic acid (1), the two positional isomers 2-methyl-8-hydroxyquinoline-7-carboxylic acid (3) and 2-methyl-5-hydroxyquinoline-6-carboxylic acid (4), as well as other hydroxyquinolines were studied in aprotic environment using cyclic voltammetry, controlled potential electrolysis, in situ UV vis and IR spectroelectrochemistry, and HPLC-MS/MS techniques. IR spectroelectrochemistry showed that oxidation unexpectedly proceeds together with protonation of the starting compound. We proved that the nitrogen atom in the heterocycle of hydroxyquinolines is protonated during the apparent 0.7 electron oxidation process. This was rationalized by the autodeprotonation reaction by another two starting molecules of hydroxyquinoline, so that the overall oxidation mechanism involves two electrons and three starting molecules. Both the electrochemical and spectroelectrochemical results showed that the oxidation mechanism is not influenced by the presence of the carboxylic group in the chemical structure of hydroxyquinolines, as results from oxidation of 2,7-dimethyl-S-hydroxyquinoline (6). In the presence of a strong proton acceptor such as pyridine, the oxidation ECEC process involves two electrons and two protons per one molecule of the hydroxyquinoline derivative. The electron transfer efficiency of hydroxyquinolines in biosystems may be related to protonation of biocompounds containing nitrogen bases. Molecular orbital calculations support the experimental findings

    Application of spectroelectrochemistry in elucidation of electrochemical mechanism of azoquinoline dye 2-methyl-5-[(E)-phenyldiazenyl]quinolin-8-ol

    No full text
    In situ spectroelectrochemical detection of reaction intermediates was used as a decisive method for elucidation of a rather complex redox mechanism of azoquinoline dye 2-methyl-5-[(E)-phenyldiazenyl]quinolin-8-ol (R-N=N-Ph; where Ph = phenyl, R = 2-methyl-8-hydroxyquinoline fragment). Electrochemical properties were studied in non-aqueous solution by cyclic voltammetry, UV–Vis and IR spectroelectrochemistry and high pressure liquid chromatography with diode array detector. Oxidation and reduction mechanisms involve coupled electron and proton transfers. Oxidation proceeds primarily on hydroxyl group at quinoline moiety and (E)-5-(phenyldiazenyl)quinoline-7,8-diol as the main oxidation product has been suggested. The electrochemically active site for reduction is the azo group. This was proved by in situ UV–Vis and IR spectroelectrochemical data. Detailed analysis of the effects of the presence of acids and bases evidenced the presence of two species in equilibrium: HOR(NH+)-N=N-Ph and HOR-N=N-Ph. The compound containing the hydrazo group (5-(2-phenylhydrazinyl)quinolin-8-ol (R-N=N-Ph) is the main reduction product. Molecular orbital calculations and DFT calculations of IR spectra support the experimental results. In situ IR spectroelectrochemical experiments proved that no reaction of R-N=N-Ph anion or dianion with the solvent acetonitrile was observed during the reduction of the azodye

    The oxidation mechanism of the antioxidant quercetin in nonaqueous media

    No full text
    The knowledge of the degradation pathways of natural dyes used in medieval textiles is necessary for the restoration of their original color. Quercetin, one of such colorants, reportedly yields the wide spectrum of oxidation products in different types of media. This study deals with electrochemical oxidation mechanism of quercetin in nonaqueous solution, which has not been yet attempted. The final oxidation product at the first oxidation wave was identified by HPLC-DAD and GC-MS techniques as 2-(3',4'-dihydroxybenzoyl)-2,4,6-trihydroxybenzofuran-3(2H)-one. The apparent two-electron process at the potential of the first oxidation wave yields current-voltage shapes with one-electron characteristics. The in situ spectroelectrochemistry measurements proved the oxidation mechanism leading through a short-lived anion radical. Two possibilities of the oxidation mechanism are discussed: two one-electron transfers, which do not have identical but similar redox potentials. or the presence of a disproportionation chemical reaction following the first one electron transfer. The quinone formed in either case is stable only on the time scale of a fast spectroelectrochemistry and undergoes fast hydroxylation reaction, where 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxybenzofuran-3-one is formed. This compound is oxidized at the potential of the second oxidation wave of quercetin
    corecore