4,038 research outputs found

    Individually distinctive features facilitate numerical discrimination of sets of objects in domestic chicks

    Get PDF
    Day-old domestic chicks approach the larger of two groups of identical objects, but in a 3 vs 4 comparison, their performance is random. Here we investigated whether adding individually distinctive features to each object would facilitate such discrimination. Chicks reared with 7 objects were presented with the operation 1 + 1 + 1 vs 1 + 1 + 1 + 1. When objects were all identical, chicks performed randomly, as expected (Experiment 1). In the remaining experiments, objects differed from one another due to additional features. Chicks succeeded when those features were differently oriented segments (Experiment 2) but failed when the features were arranged to depict individually different face-like displays (Experiment 3). Discrimination was restored if the face-like stimuli were presented upside-down, disrupting global processing (Experiment 4). Our results support the claim that numerical discrimination in 3 vs 4 comparison benefits from the presence of distinctive features that enhance object individuation due to individual processing. Interestingly, when the distinctive features are arranged into upright face-like displays, the process is susceptible to global over local interference due to configural processing. This study was aimed at assessing whether individual object processing affects numerical discrimination. We hypothesise that in humans similar strategies aimed at improving performance at the non-symbolic level may have positive effects on symbolic mathematical abilities

    Design optimization of meta-material transmission lines for linear and non-linear microwave signal processing

    Get PDF
    The possibility to use CRLH (Composite Right-/Left-Handed) cells to realize both distributed wide-band filters for linear signal processing and non-linear devices like frequency doublers is investigated analytically and numerically. Full-wave electromagnetic simulations are performed for the filtering structure by means of a commercial software package and confirm the validity of the analytic results. Numerical results for CRLH NLTL (Non-Linear Transmission Line) obtained by using the Microwave Office are discussed, providing design considerations about the synthesis of such a component

    Geometric combinatorial algebras: cyclohedron and simplex

    Full text link
    In this paper we report on results of our investigation into the algebraic structure supported by the combinatorial geometry of the cyclohedron. Our new graded algebra structures lie between two well known Hopf algebras: the Malvenuto-Reutenauer algebra of permutations and the Loday-Ronco algebra of binary trees. Connecting algebra maps arise from a new generalization of the Tonks projection from the permutohedron to the associahedron, which we discover via the viewpoint of the graph associahedra of Carr and Devadoss. At the same time that viewpoint allows exciting geometrical insights into the multiplicative structure of the algebras involved. Extending the Tonks projection also reveals a new graded algebra structure on the simplices. Finally this latter is extended to a new graded Hopf algebra (one-sided) with basis all the faces of the simplices.Comment: 23 figures, new expanded section about Hopf algebra of simplices, with journal correction

    The Ages of Galactic Bulge Stars with Realistic Uncertainties

    Full text link
    Using modern isochrones with customized physics and carefully considered statistical techniques, we recompute the age distribution for a sample of 91 micro-lensed dwarfs in the Galactic bulge presented by Bensby et al. (2017) and do not produce an age distribution consistent with their results. In particular, our analysis finds that only 15 of 91 stars have ages younger than 7 Gyr, compared to their finding of 42 young stars in the same sample. While we do not find a constituency of very young stars, our results do suggest the presence of an 8\sim8 Gyr population at the highest metallicities, thus contributing to long-standing debate about the age--metallicity distribution of the Galactic bulge. We supplement this with attempts at independent age determinations from two sources of photometry, BDBS and \textit{Gaia}, but find that the imprecision of photometric measurements prevents reliable age and age uncertainty determinations. Lastly, we present age uncertainties derived using a first-order consideration of global modeling uncertainties in addition to standard observational uncertainties. The theoretical uncertainties are based on the known variance of free parameters in the 1D stellar evolution models used to generate isochrones, and when included, result in age uncertainties of 22--55 Gyr for this spectroscopically well-constrained sample. These error bars, which are roughly twice as large as typical literature values, constitute realistic lower limits on the true age uncertainties.Comment: accepted to ApJ; revisions complet

    Knowledge‐first functionalism

    Get PDF
    This paper has two aims. The first is critical: I identify a set of normative desiderata for accounts of justified belief and I argue that prominent knowledge first views have difficulties meeting them. Second, I argue that my preferred account, knowledge first functionalism, is preferable to its extant competitors on normative grounds. This account takes epistemically justified belief to be belief generated by properly functioning cognitive processes that have generating knowledge as their epistemic function

    Pattern Avoidance in Poset Permutations

    Full text link
    We extend the concept of pattern avoidance in permutations on a totally ordered set to pattern avoidance in permutations on partially ordered sets. The number of permutations on PP that avoid the pattern π\pi is denoted AvP(π)Av_P(\pi). We extend a proof of Simion and Schmidt to show that AvP(132)AvP(123)Av_P(132) \leq Av_P(123) for any poset PP, and we exactly classify the posets for which equality holds.Comment: 13 pages, 1 figure; v2: corrected typos; v3: corrected typos and improved formatting; v4: to appear in Order; v5: corrected typos; v6: updated author email addresse

    The Blanco DECam Bulge Survey (BDBS) VIII: Chemo-kinematics in the southern Galactic bulge from 2.3 million red clump stars with Gaia DR3 proper motions

    Full text link
    The Blanco DECam Bulge Survey (BDBS) provides near-ultraviolet to near-infrared photometry for ~250 million unique stars. By combining BDBS photometry with the latest Gaia astrometry, we characterize the chemo-dynamics of red clump stars across the BDBS footprint, using an unprecedented sample size and sky coverage. We construct a sample of ~2.3 million red clump giants in the bulge with photometric metallicities, BDBS photometric distances, and proper motions. We study the kinematics of the red clump stars as a function of sky position and metallicity, by investigating proper motion rotation curves, velocity dispersions, and proper motion correlations across the southern Galactic bulge. We find that metal-poor red clump stars exhibit lower rotation amplitudes, at ~29 km s1^{-1} kpc^{-1}. The peak of the angular velocity is ~39 km s^{-1} kpc^{-1} for [Fe/H] ~ -0.2 dex, exhibiting declining rotation at higher [Fe/H]. The velocity dispersion is higher for metal-poor stars, while metal-rich stars show a steeper gradient with Galactic latitude, with a maximum dispersion at low latitudes along the bulge minor axis. Only metal-rich stars ([Fe/H] >~ -0.5 dex) show clear signatures of the bar in their kinematics, while the metal-poor population exhibits isotropic motions with an axisymmetric pattern around Galactic longitude l = 0. This work reports the largest sample of bulge stars with distance, metallicity, and astrometry and shows clear kinematic differences with metallicity. The global kinematics over the bulge agrees with earlier studies. However, we see striking changes with increasing metallicity and for the first time, see kinematic differences for stars with [Fe/H]>-0.5, suggesting that the bar itself may have kinematics that depends on metallicity.Comment: 12 pages, Accepted for publication in A&

    Invariant Peano curves of expanding Thurston maps

    Full text link
    We consider Thurston maps, i.e., branched covering maps f ⁣:S2S2f\colon S^2\to S^2 that are postcritically finite. In addition, we assume that ff is expanding in a suitable sense. It is shown that each sufficiently high iterate F=fnF=f^n of ff is semi-conjugate to zd ⁣:S1S1z^d\colon S^1\to S^1, where dd is equal to the degree of FF. More precisely, for such an FF we construct a Peano curve γ ⁣:S1S2\gamma\colon S^1\to S^2 (onto), such that Fγ(z)=γ(zd)F\circ \gamma(z) = \gamma(z^d) (for all zS1z\in S^1).Comment: 63 pages, 12 figure

    Baby MIND: A magnetised spectrometer for the WAGASCI experiment

    Get PDF
    The WAGASCI experiment being built at the J-PARC neutrino beam line will measure the difference in cross sections from neutrinos interacting with a water and scintillator targets, in order to constrain neutrino cross sections, essential for the T2K neutrino oscillation measurements. A prototype Magnetised Iron Neutrino Detector (MIND), called Baby MIND, is being constructed at CERN to act as a magnetic spectrometer behind the main WAGASCI target to be able to measure the charge and momentum of the outgoing muon from neutrino charged current interactions.Comment: Poster presented at NuPhys2016 (London, 12-14 December 2016). Title + 4 pages, LaTeX, 6 figure
    corecore