23 research outputs found

    Monte Carlo Simulations for Ghost Imaging Based on Scattered Photons

    Full text link
    X-ray based imaging modalities are widely used in research, industry, and in the medical field. Consequently, there is a strong motivation to improve their performances with respect to resolution, dose, and contrast. Ghost imaging (GI) is an imaging technique in which the images are reconstructed from measurements with a single-pixel detector using correlation between the detected intensities and the intensity structures of the input beam. The method that has been recently extended to X-rays provides intriguing possibilities to overcome several fundamental challenges of X-ray imaging. However, understanding the potential of the method and designing X-ray GI systems pose challenges since in addition to geometric optic effects, radiation-matter interactions must be considered. Such considerations are fundamentally more complex than those at longer wavelengths as relativistic effects such as Compton scattering become significant. In this work we present a new method for designing and implementing GI systems using the particle transport code FLUKA, that rely on Monte Carlo (MC) sampling. This new approach enables comprehensive consideration of the radiation-matter interactions, facilitating successful planning of complex GI systems. As an example of an advanced imaging system, we simulate a high-resolution scattered photons GI technique
    corecore