84 research outputs found

    CHARACTERIZATIONS OF SETS OF FINITE PERIMETER USING HEAT KERNELS IN METRIC SPACES

    Get PDF
    Abstract. The overarching goal of this paper is to link the notion of sets of finite perimeter (a concept associated with N 1,1 -spaces) and the theory of heat semigroups (a concept related to N 1,2 -spaces) in the setting of metric measure spaces whose measure is doubling and supports a 1-Poincaré inequality. We prove a characterization of sets of finite perimeter in terms of a short time behavior of the heat semigroup in such metric spaces. We also give a new characterization of BV functions in terms of a near-diagonal energy in this general setting

    CHARACTERIZATIONS OF SETS OF FINITE PERIMETER USING HEAT KERNELS IN METRIC SPACES

    Get PDF
    Abstract. The overarching goal of this paper is to link the notion of sets of finite perimeter (a concept associated with N 1,1 -spaces) and the theory of heat semigroups (a concept related to N 1,2 -spaces) in the setting of metric measure spaces whose measure is doubling and supports a 1-Poincaré inequality. We prove a characterization of sets of finite perimeter in terms of a short time behavior of the heat semigroup in such metric spaces. We also give a new characterization of BV functions in terms of a near-diagonal energy in this general setting

    Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below

    Get PDF
    This paper is devoted to a deeper understanding of the heat flow and to the refinement of calculus tools on metric measure spaces (X,d,m). Our main results are: - A general study of the relations between the Hopf-Lax semigroup and Hamilton-Jacobi equation in metric spaces (X,d). - The equivalence of the heat flow in L^2(X,m) generated by a suitable Dirichlet energy and the Wasserstein gradient flow of the relative entropy functional in the space of probability measures P(X). - The proof of density in energy of Lipschitz functions in the Sobolev space W^{1,2}(X,d,m). - A fine and very general analysis of the differentiability properties of a large class of Kantorovich potentials, in connection with the optimal transport problem. Our results apply in particular to spaces satisfying Ricci curvature bounds in the sense of Lott & Villani [30] and Sturm [39,40], and require neither the doubling property nor the validity of the local Poincar\'e inequality.Comment: Minor typos corrected and many small improvements added. Lemma 2.4, Lemma 2.10, Prop. 5.7, Rem. 5.8, Thm. 6.3 added. Rem. 4.7, Prop. 4.8, Prop. 4.15 and Thm 4.16 augmented/reenforced. Proof of Thm. 4.16 and Lemma 9.6 simplified. Thm. 8.6 corrected. A simpler axiomatization of weak gradients, still equivalent to all other ones, has been propose

    Stability and Continuity of Functions of Least Gradient

    No full text
    In this note we prove that on metric measure spaces, functions of least gradient, as well as local minimizers of the area functional (after modification on a set of measure zero) are continuous everywhere outside their jump sets. As a tool, we develop some stability properties of sequences of least gradient functions. We also apply these tools to prove a maximum principle for functions of least gradient that arise as solutions to a Dirichlet problem
    corecore