41 research outputs found

    Investigating the Near-Infrared Properties of Planetary Nebula II. Medium Resolution Spectra

    Full text link
    We present medium-resolution (R~700) near-infrared (lambda = 1 - 2.5 micron) spectra of a sample of planetary nebulae (PNe). A narrow slit was used which sampled discrete locations within the nebulae; observations were obtained at one or more positions in the 41 objects included in the survey. The PN spectra fall into one of four general categories: H I emission line-dominated PNe, H I and H_2 emission line PNe, H_2-dominated PNe, and continuum-dominated PNe. These categories correlate with morphological type, with the elliptical PNe falling into the first group, and the bipolar PNe primarily in the H_2 and continuum emission groups. Other spectral features were observed in all categories, such as continuum emission from the central star, C_2, CN, and CO emission, and warm dust continuum emission. Molecular hydrogen was detected for the first time in four PNe. An excitation analysis was performed using the H_2 line ratios for all of the PN spectra in the survey where a sufficient number of lines were observed. One unexpected result from this analysis is that the H_2 is excited by absorption of ultraviolet photons in most of the PNe surveyed, although for several PNe in our survey collisional excitation in moderate velocity shocks plays an important role. The correlation between bipolar morphology and H_2 emission has been strengthened with the new detections of H_2 in this survey.Comment: 13 pages, 8 tables, 33 figure

    Galactic clusters with associated Cepheid variables. VII. Berkeley 58 and CG Cassiopeiae

    Get PDF
    Photoelectric, photographic, and CCD UBV photometry, spectroscopic observations, and star counts are presented for the open cluster Berkeley 58 to examine a possible association with the 4.37d Cepheid CG Cas. The cluster is difficult to separate from the early-type stars belonging to the Perseus spiral arm, in which it is located, but has reasonably well-defined parameters: an evolutionary age of ~10^8 years, a mean reddening of E(B-V)_(B0)=0.70+-0.03 s.e., and a distance of 3.03+-0.17 kpc (V_0-M_V=12.40+-0.12 s.d.). CG Cas is a likely cluster coronal member on the basis of radial velocity, and its period increase of +0.170+-0.014 s yr^(-1) and large light amplitude describe a Cepheid in the third crossing of the instability strip lying slightly blueward of strip centre. Its inferred reddening and luminosity are E(B-V)=0.64+-0.02 s.e. and =-3.06+-0.12. A possible K supergiant may also be a cluster member.Comment: Accepted for Publication (MNRAS

    Effects of changing modulation and pitch parameters on tomotherapy delivery quality assurance plans

    No full text
    This study was aimed at investigating delivery quality assurance (DQA) discrepancies observed for helical tomotherapy plans. A selection of tomotherapy plans that initially failed the DQA process was chosen for this investigation. These plans failed the fluence analysis as assessed using gamma criteria (3%, 3 mm) with radiographic film. Each of these plans was modified (keeping the planning constraints the same), beamlets rebatched and reoptimized. By increasing and decreasing the modulation factor, the fluence in a circumferential plane as measured with a diode array was assessed. A subset of these plans was investigated using varied pitch values. Metrics for each plan that were examined were point doses, fluences, leaf opening times, planned leaf sinograms, and uniformity indices. In order to ensure that the treatment constraints remained the same, the dose-volume histograms (DVHs) of all the modulated plans were compared to the original plan. It was observed that a large increase in the modulation factor did not significantly improve DVH uniformity, but reduced the gamma analysis pass rate. This also increased the treatment delivery time by slowing down the gantry rotation speed which then increases the maximum to mean non-zero leaf open time ratio. Increasing and decreasing the pitch value did not substantially change treatment time, but the delivery accuracy was adversely affected. This may be due to many other factors, such as the complexity of the treatment plan and site. Patient sites included in this study were head and neck, right breast, prostate, abdomen, adrenal, and brain. The impact of leaf timing inaccuracies on plans was greater with higher modulation factors. Point-dose measurements were seen to be less susceptible to changes in pitch and modulation factors. The initial modulation factor used by the optimizer, such that the TPS generated ‘actual’ modulation factor within the range of 1.4 to 2.5, resulted in an improved deliverable plan
    corecore