385 research outputs found

    A Methodology to Estimate Changes in Statistical Life Expectancy Due to the Control of Particulate Matter in Air Pollution

    Get PDF
    Studies in the United States have shown that those living in less polluted cities live longer than those living in more polluted cities. After adjustments for other factors, an association remained between ambient concentrations of fine particles and shorter life expectancy. This paper presents a methodology to apply the findings of these epidemiological studies to scenarios to control fine particulate matter in Europe and to estimate the resulting losses in statistical life expectancy that can be attributed to particulate matter pollution. Calculations are carried out for all of Europe with a 50*50 km resolution, distinguishing higher PM2.5 levels in urban areas. The methodology uses population statistics and projections from the United Nations, and applies changes in mortality risk identified by the epidemiological studies to the life tables for the individual countries. The preliminary implementation suggests that, for constant 1990 pollution levels, statistical life expectancy is reduced by approximately 500 days (95 percent confidence interval ranging from 168 - 888 days). By 2010, the control measures presently decided for emissions of primary particles and the precursors of secondary aerosols are expected to reduce these losses to about 280 days (94 -497), while the theoretical maximum technically feasible emission reductions could bring reduced life expectancy below 200 (65 -344) days. While the quantifications in this study must be considered as preliminary, the methodology will allow the introduction of health impacts from fine particulate matter into a multi-pollutant/multi-effect framework so that control measures can be explored taking full account of their ancillary benefits for acidification, eutrophication and ground-level ozone

    Multiple Rieske/cytb complexes in a single organism

    Get PDF
    AbstractMost organisms contain a single Rieske/cytb complex. This enzyme can be integrated in any respiratory or photosynthetic electron transfer chain that is quinone-based and sufficiently energy rich to allow for the turnover of three enzymes — a quinol reductase, a Rieske/cytb complex and a terminal oxidase. Despite this universal usability of the enzyme a variety of phylogenetically distant organisms have multiple copies thereof and no reason for this redundancy is obvious. In this review we present an overview of the distribution of multiple copies among species and describe their properties from the scarce experimental results, analysis of their amino acid sequences and genomic context. We discuss the predicted redox properties of the Rieske cluster in relation to the nature of the pool quinone. It appears that acidophilic iron-oxidizing bacteria specialized one of their two copies for reverse electron transfer, archaeal Thermoprotei adapted their three copies to the interaction with different oxidases and several, phylogenetically unrelated species imported a second complex with a putative heme ci that may confer some yet to be determined properties to the complex. These hypothesis and all the more the so far completely unexplained cases call for further studies and we put forward a number of suggestions for future research that we hope to be stimulating for the field. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes

    Emissions of air pollutants for the World Energy Outlook 2012 energy scenarios

    Get PDF
    This report examines global emissions of major air pollutants (SO2, NOx, PM2.5) resulting from energy scenarios developed for the World Energy Outlook 2012 (OECD/IEA, 2012). Estimates include emissions for 25 regions according to the aggregation used in the IEA World Energy Model (WEM). Emissions have been estimated using the IIASA GAINS model. The 2012 Outlook discusses four energy pathways for the next 25 years. The central scenario, the New Policies (NP) scenario, takes into account recently announced policy commitments and assumes that they are implemented in a cautious manner. The Current Policies (CP) scenario assumes no new policies beyond those adopted by mid-2012. The High Energy Efficiency (HE) scenario simulates the effects of policies aimed at promoting energy efficiency in all countries in the world. The 450 scenario assumes radical policy action consistent with limiting the global temperature increase to two degrees Celsius (2 oC). All the four pathways were implemented into the GAINS model. Next, emissions of air pollutants were calculated. Calculations take into account the current air pollution control legislation and policies in each country or region as adopted or in the pipeline by mid-2012. Presented in this report estimates do not include emissions from international shipping as well as cruising emissions from aviation. They also do not include emissions from biomass burning (deforestation, savannah burning, and vegetation fires). In 2010, world emissions of SO2 from sources covered in this report were about 86 million tons. OECD countries contributed 21 percent of this total. Implementation of pollution controls for the Current Policies Scenario causes an eight percent decrease in world emissions of SO2 in 2020 compared with 2010. This is a combined result of reducing emissions from OECD countries (by about 24 percent), increase in India, and a decrease in China, Russia, South Africa, and Middle East. After 2020, emissions from many non-OECD countries continue rising, which causes an increase of world emissions by about five million tons until 2035. Particularly remarkable is the increase in SO2 emissions in India. The corresponding numbers for NOx are: 85 million tons in 2010 (of which 35 percent originated from the OECD countries), five percent decrease until 2020 and next increase until 2035 by 12 million tons. Emissions of PM2.5 (43 million tons in 2010) are dominated by sources from non-OECD countries -- 90 percent of total. Changes in the emissions until 2035 are rather small, with a seven percent decrease in the OECD countries and a stabilization in the developing world. The 450 Scenario causes an important reduction in emissions of air pollutants. In 2035, the emissions of SO2 are 36 percent lower than in the Current Policies case. Emissions of NOx decrease by 32 percent and those of PM2.5 by 11 percent. Emissions for the New Policies and the High Energy Efficiency scenarios lie between those for the Current Policies and the 450 scenarios. Costs of controlling emissions of sulphur and nitrogen oxides and PM (dust) in 2010 are estimated at about 217 billion Euros/a. Until 2035, these costs increase in the Current Policies Scenario by more than a factor of two, which is due to higher activity levels and increasing stringency of controls. In 2035, 61 percent of the total costs are the expenditures on reducing emissions from road transport. The 450 Scenario brings 32 percent cost savings in 2035 compared to the Current Policies case. This study also estimates health impacts of air pollution in Europe, China and India in terms of life years lost (YOLL) attributable to the exposure from anthropogenic emissions of PM2.5. PM concentrations as in 2010 cause a loss of about 2.2 billion life-years. This estimate is dominated by impacts in China and India. The Current Policies Scenario implies an increase of the YOLL indicator in 2035 by 46 percent to 3.3 billion. Decrease of PM2.5 concentrations as in the 450 Scenario in 2035 saves about 870 million life-years. Lower impact indicators and lower control costs in the scenarios that simulate effects of policies towards reducing energy demand and the use of fossil fuels clearly demonstrate important co-benefits of such policies for air pollution

    Emissions of air pollutants for the World Energy Outlook 2011 Energy Scenarios

    Get PDF
    This report examines global emissions of major air pollutants (SO2, NOx, PM2.5) resulting from energy scenarios developed for the World Energy Outlook 2012 (OECD/IEA, 2012). Estimates include emissions for 25 regions according to the aggregation used in the IEA World Energy Model (WEM). Emissions have been estimated using the IIASA GAINS model. The 2012 Outlook discusses four energy pathways for the next 25 years. The central scenario, the New Policies (NP) scenario, takes into account recently announced policy commitments and assumes that they are implemented in a cautious manner. The Current Policies (CP) scenario assumes no new policies beyond those adopted by mid-2012. The High Energy Efficiency (HE) scenario simulates the effects of policies aimed at promoting energy efficiency in all countries in the world. The 450 scenario assumes radical policy action consistent with limiting the global temperature increase to two degrees Celsius. All four pathways were implemented into the GAINS model. Next, emissions of air pollutants were calculated. Calculations take into account the current air pollution control legislation and policies in each country or region as adopted or in the pipeline by mid-2012. Presented in this report estimates do not include emissions from international shipping as well as cruising emissions from aviation. They also do not include emissions from biomass burning (deforestation, savannah burning, and vegetation fires). In 2010, world emissions of SO2 from sources covered in this report were about 86 million tons. OECD countries contributed 21 percent of this total. Implementation of pollution controls for the Current Policies Scenario causes an eight percent decrease in world emissions of SO2 in 2020 compared with 2010. This is a combined result of reducing emissions from OECD countries (by about 24 percent), increase in India, and a decrease in China, Russia, South Africa, and Middle East. After 2020, emissions from many non-OECD countries continue rising, which causes an increase of world emissions by about five million tons until 2035. Particularly remarkable is the increase in SO2 emissions in India. The corresponding numbers for NOx are: 85 million tons in 2010 (of which 35 percent originated from the OECD countries), five percent decrease until 2020 and next increase until 2035 by 12 million tons. Emissions of PM2.5 (43 million tons in 2010) are dominated by sources from non-OECD countries - 90 percent of total. Changes in the emissions until 2035 are rather small, with a seven percent decrease in the OECD countries and a stabilization in the developing world. The 450 Scenario causes an important reduction in emissions of air pollutants. In 2035, the emissions of SO2 are 36 percent lower than in the Current Policies case. Emissions of NOx decrease by 32 percent and those of PM2.5 by 11 percent. Emissions for the New Policies and the High Energy Efficiency scenarios lie between those for the Current Policies and the 450 scenarios. Costs of controlling emissions of sulphur and nitrogen oxides and PM (dust) in 2010 are estimated at about 217 billion Euros/a. Until 2035, these costs increase in the Current Policies Scenario by more than a factor of two, which is due to higher activity levels and increasing stringency of controls. In 2035, 61 percent of the total costs are the expenditures on reducing emissions from road transport. The 450 Scenario brings 32 percent cost savings in 2035 compared to the Current Policies case. This study also estimates health impacts of air pollution in Europe, China and India in terms of life years lost (YOLL) attributable to the exposure from anthropogenic emissions of PM2.5. PM concentrations as in 2010 cause a loss of about 2.2 billion life-years. This estimate is dominated by impacts in China and India. The Current Policies Scenario implies an increase of the YOLL indicator in 2035 by 46 percent to 3.3 billion. Decrease of PM2.5 concentrations as in the 450 Scenario in 2035 saves about 870 million life-years. Lower impact indicators and lower control costs in the scenarios that simulate effects of policies towards reducing energy demand and the use of fossil fuels clearly demonstrate important co-benefits of such policies for air pollution

    The Extension of the RAINS Model to Greenhouse Gases

    Get PDF
    Many of the traditional air pollutants and greenhouse gases have common sources, offering a cost-effective potential for simultaneous improvements for both traditional air pollution problems as well as climate change. A methodology has been developed to extend the RAINS integrated assessment model to explore synergies and trade-offs between the control of greenhouse gases and air pollution. With this extension, the RAINS model allows now the assessment of emission control costs for the six greenhouse gases covered under the Kyoto Protocol (CO2, CH4, N2O and the three F-gases) together with the emissions of air pollutants SO2, NOX, VOC, NH3 AND PM. In the first phase of the study, emissions, costs and control potentials for the six greenhouse gases covered in the Kyoto Protocol have been estimated and implemented in the RAINS model. Emission estimates are based on methodologies and emission factors proposed by the IPCC emission reporting guidelines. The large number of control options for greenhouse gases have been grouped into approximately 150 packages of measures and implemented in the RAINS model for the European countries. These control options span a wide range of cost-effectiveness. There a re certain advanced technical measures with moderate costs, and certain measures exist for which the economic assessment suggests even negative costs, if major side impacts (cost savings) are calculated. Illustrative example calculations clearly demonstrate that conclusions on the cost-effectiveness of emission reduction strategies are crucially depending on the boundaries of the analysis. The net cost of greenhouse gas control strategies are significantly lower if the immediate cost-savings from avoided air pollution control costs are taken into consideration. For a 15 percent reduction of the CO2 emissions from the power sector in the EU, avoided pollution control costs could compensate two third of the CO2 control costs. Depending on the design of the control strategy, net costs of greenhouse gas mitigation could even be negative, which is in stark contrast to conclusions for a CO2 only strategy. However, there are certain greenhouse gas mitigation measures, such as increased use of biomass that could deteriorate the negative impacts of air pollution, while yielding very little economic synergies. A combined approach towards greenhouse gas mitigation and air pollution control would not only reveal economic synergies, but also harness additional environmental benefits. Even in a situation with stringent emission control requirements for air pollution as it is required by the EU legislation, modifications in fuel use geared towards reductions of greenhouse gases could lead as a side impact to significant reductions in the residual emissions of air pollutants. The economic benefits of such "windfall emission reductions" could be substantial. The extended RAINS model framework will offer a tool to systematically investigate such economic and environmental synergies between greenhouse gas mitigation and air pollution control while avoiding negative side impacts

    TSAP-2012 Baseline: Health and environmental impacts

    Get PDF
    This report examines the health and environmental impacts of the TSAP-2012 baseline emission scenarios that have been presented in the TSAP Report #1 to the Stakeholder Expert Group in June 2012. The baseline suggests for the next decades a steady decline of energy-related emissions from industry, households and transport while no significant changes are foreseen for NH3 from agricultural activities. These emission trajectories will lead to significant improvements in air quality. For instance, loss of statistical life expectancy from exposure to fine particulate matter (PM2.5) is expected to decline from 9.6 months in 2000 and 6.9 months in 2010 to 5.5 months in 2020 and 5.0 months in 2030. It is estimated that the number of premature deaths attributable to short-term exposure of ground-level ozone will drop by about 30% by 2020. Ecosystems area where biodiversity is threatened by excess nitrogen deposition will shrink from 1.2 million km2 in 2000 to 900,000 km2 in 2030, and acidification will remain an issue at only four percent of the European forest area. However, by 2020 the baseline improvements for fine particular matter health impacts and eutrophication will fall short of the targets established in the 2005 Thematic Strategy on Air Pollution, while for acidification and ozone these targets will be met. Furthermore, it is unlikely that the baseline development will achieve full compliance with the air quality limit values for PM10 and NO2 throughout Europe. Equally, the baseline scenario will not provide protection against excess nitrogen deposition at almost 50% of the legally protected Natura2000 areas and other protected zones. In addition, the magnitude of air pollution impacts and resulting damage remains substantial. It is estimated that for the baseline in 2030, the European population would still suffer a loss of 210 million life-years and experience 18,000 premature deaths because of ozone exposure. Biodiversity will remain threatened by excess nitrogen input at 900,000 km2 of ecosystems, including 250,000 km2 which are legally protected, inter alia as Natura2000 areas. The analysis also highlights the scope for additional measures that could alleviate the remaining damage and move closer to the objectives of the Sixth Environment Action Program. Full application of readily available technical emission reduction measures in the EU could reduce health impacts from PM by 2020 by another 30% and thereby gain more than 55 million life-years in the EU. It could save another 3,000 premature deaths per year because of lower ozone concentrations. Further controls of agricultural emissions could protect biodiversity at another 200,000 km2 of ecosystems against excess nitrogen deposition, including 50,000 km2 of Natura2000 areas and other protected zones. It could eliminate almost all likely exceedances of PM10 air quality limit values in the old Member States, while in the urban areas of new Member States additional action to substitute solid fuels in the household sector with cleaner forms of energy would be required. Such Europe-wide emission controls would also eliminate in 2030 all likely cases of noncompliance with EU air quality standards for NO2 with the exception of a few stations for which additional local measures (e.g., traffic restrictions, low emission zones) would be necessary. While the general trend appears to be robust, quantification of the remaining effects requires more uncertainty analyses

    Estimation of the Global Health Impacts of Air Pollution

    Get PDF
    Air pollution is increasingly recognized as a significant contributor to global health outcomes. A methodological framework for evaluating the global health related outcomes of outdoor and indoor (household) air pollution is presented and validated for the year 2005. Ambient concentrations of PM2.5 re estimated with a combination of energy and atmospheric models, with detailed representation of urban and rural spatial exposures. Populations dependent on solid fuels are established with household survey data. Health impacts for outdoor and household air pollution are independently calculated using the fractions of disease that can be attributed to ambient air pollution exposure and solid fuel use. Estimated ambient pollution concentrations indicate that more than 80% of the population exceeds the WHO Air Quality Guidelines in 2005. In addition, 3.26 billion people were found to use solid fuel for cooking in three regions of Sub Saharan Africa, South Asia and Pacific Asia in 2005. Outdoor air pollution results in 2.7 million deaths or 23 million DALYs while household air pollution from solid fuel use and related indoor smoke results in 2.1 million deaths or 41.6 million DALYs. The higher morbidity from household air pollution can be attributed to children below the age of five in Sub Saharan Africa and South Asia. The burden of disease from air pollution is found to be significant, thus indicating the importance of policy interventions
    • …
    corecore