22 research outputs found

    HDAC3 Mediates the Inflammatory Response and LPS Tolerance in Human Monocytes and Macrophages

    Get PDF
    Histone deacetylases (HDACs) are a group of enzymes that control histone deacetylation and bear potential to direct expression of large gene sets. We determined the effect of HDAC inhibitors (HDACi) on human monocytes and macrophages, with respect to their polarization, activation, and their capabilities of inducing endotoxin tolerance. To address the role for HDACs in macrophage polarization, we treated monocytes with HDAC3i, HDAC6i or pan-HDACi prior to polarization into M1 or M2 macrophages using IFNγ or IL-4 respectively. To study the HDAC inhibition effect on cytokine expression, macrophages were treated with HDACi prior to LPS-stimulation. TNFα, IL-6, and p40 were measured with ELISA, whereas modifications of Histone 3 and STAT1 were assessed using western blot. To address the role for HDAC3 in repeated LPS challenge induction, HDAC3i or HDAC3 siRNA was added to monocytes prior to incubation with IFNγ, which were then repeatedly challenged with LPS and analyzed by means of protein analyses and transcriptional profiling. Pan-HDACi and HDAC3i reduced cytokine secretion in monocytes and M1 macrophages, whereas HDAC6i yielded no such effect. Notably, neither pan-HDACi nor HDAC3i reduced cytokine secretion in M2 macrophages. In contrast to previous reports in mouse macrophages, HDAC3i did not affect macrophage polarization in human cells. Likewise, HDAC3 was not required for IFNγ signaling or IFNβ secretion. Cytokine and gene expression analyses confirmed that IFNγ-treated macrophages consistently develop a cytokine response after LPS repeated challenge, but pretreatment with HDAC3i or HDAC3 siRNA reinstates a state of tolerance reflected by general suppression of tolerizable genes, possibly through decreasing TLRs expression, and particularly TLR4/CD14. The development of endotoxin tolerance in macrophages is important to reduce exacerbated immune response and limit tissue damage. We conclude that HDAC3 is an attractive protein target to mediate macrophage reactivity and tolerance induction in inflammatory macrophages

    Salinity-dependent contact angle alteration in oil/brine/silicate systems: The effect of temperature

    Get PDF
    To understand the success of low salinity water flooding in improving oil recovery, it is important to identify the molecular scale mechanisms that control the wettability and thus the adhesion between oil and rock. Previous experiments have attributed the wettability alteration in core flood experiments either to the expansion of the electric double layer or to multicomponent ion exchange reactions or a combination of both. Here, we explore changes of the contact angle of brine droplets on mica in ambient oil (n-decane plus added fatty acid) at variable temperature as a function of the concentration of mono- and divalent cations. For 20 °C and 40 °C, we find that the contact angle decreases by up to 30° with decreasing divalent cation concentration but remains constant upon decreasing the total salinity by removing only monovalent cations, i.e. upon double layer expansion at constant divalent cation concentration. At 60 °C, we find a remarkable increase of the water contact angle of artificial sea water to values of approximately 120°. This value decreases upon dilution to values in the range of 10-40 °C, where the lowest values are again only obtained upon removing the divalent cations. These findings corroborate the conclusion of earlier measurements at room temperature that divalent cations play an essential role in controlling the wettability of carboxylic acid groups to mineral surface, presumably in an ion bridging type mechanism. We also demonstrate that the contact angle reduction occurs very quickly upon flushing a sessile droplet of artificial sea water with divalent cation-free or simply diluted brine, suggesting fast equilibration as required for a successful tertiary water flooding process. Our experiments also demonstrate that, despite the simplicity of the present system, the origins of wettability alteration are rather complex and that synergistic effects can lead to dramatic variations such as the unexpectedly high contact angle at 60 °C

    In Vitro Simulation of the Environment in the Upper Gastrointestinal Lumen After Drug Administration in the Fed State Using the TIM-1 System and Comparison With Luminal Data in Adults

    No full text
    We evaluated the environment in TIM-1 luminal compartments using paracetamol and danazol solutions and suspensions and the fed state configuration. Data were compared with recently published data in healthy adults. TIM-1 experiments were performed with a 3-fold downscale. Volumes of secretions in gastric and duodenal compartments adequately reflected the luminal data in adults up to 3 h post drug dosing. pH values in duodenal and jejunal compartments adequately reflected average pH values in adults. In gastric compartment pH values where initially higher than average values in adults and reached baseline levels earlier than in adults. The environment in the TIM-1 gastric compartment and jejunal compartment adequately reflected the average total paracetamol and danazol amounts per volume of contents in the adult stomach and upper small intestine, respectively. Total bile acids concentrations in the micellar phase of contents in duodenal and jejunal compartments overestimated micellar concentrations in the upper small intestine of adults. Adjustments in gastric emptying/acid secretion rates and bile acids identities in the duodenal and jejunal compartments, and application of dynamic bile acids secretion rates are expected to further improve the relevance of luminal conditions in TIM-1 compartments with those in adults. © 2021 American Pharmacists Associatio

    The SCFA butyrate stimulates the epithelial production of retinoic acid via inhibition of epithelial HDAC

    No full text
    In the intestinal mucosa, retinoic acid (RA) is a critical signaling molecule. RA is derived from dietary vitamin A (retinol) through conversion by aldehyde dehydrogenases (aldh). Reduced levels of short-chain fatty acids (SCFAs) are associated with pathological microbial dysbiosis, inflammatory disease, and allergy. We hypothesized that SCFAs contribute to mucosal homeostasis by enhancing RA production in intestinal epithelia. With the use of human and mouse epithelial cell lines and primary enteroids, we studied the effect of SCFAs on the production of RA. Functional RA conversion was analyzed by Adlefluor activity assays. Butyrate (0-20 mM), in contrast to other SCFAs, dose dependently induced aldh1a1 or aldh1a3 transcript expression and increased RA conversion in human and mouse epithelial cells. Epithelial cell line data were replicated in intestinal organoids. In these organoids, butyrate (2-5 mM) upregulated aldh1a3 expression (36-fold over control), whereas aldh1a1 was not significantly affected. Butyrate enhanced maturation markers (Mucin-2 and villin) but did not consistently affect stemness markers or other Wnt target genes (lgr5, olfm4, ascl2, cdkn1). In enteroids, the stimulation of RA production by SCFA was mimicked by inhibitors of histone deacetylase 3 (HDAC3) but not by HDAC1/2 inhibitors nor by agonists of butyrate receptors G-protein-coupled receptor (GPR)43 or GPR109A, indicating that butyrate stimulates RA production via HDAC3 inhibition. We conclude that the SCFA butyrate inhibits HDAC3 and thereby supports epithelial RA productio

    Polyinosinic Acid Blocks Adeno-Associated Virus Macrophage Endocytosis In Vitro and Enhances Adeno-Associated Virus Liver-Directed Gene Therapy In Vivo

    No full text
    <p>Adeno-associated virus serotype 8 (AAV8) has been demonstrated to be effective for liver-directed gene therapy in humans. Although hepatocytes are the main target cell for AAV8, there is a loss of the viral vector because of uptake by macrophages and Kupffer cells. Reducing this loss would increase the efficacy of viral gene therapy and allow a dose reduction. The receptor mediating this uptake has not been identified; a potential candidate seems the macrophage scavenger receptor A (SR-A) that is involved in the endocytosis of, for instance, adenovirus. In this study we show that SR-A can mediate scAAV8 endocytosis and that blocking it with polyinosinic acid (poly[i]) reduces endocytosis significantly in vitro. Subsequently, we demonstrate that blocking this receptor improves scAAV-mediated liver-directed gene therapy in a model for inherited hyperbilirubinemia, the uridine diphospho-glucuronyl transferase 1A1-deficient Gunn rat. In male rats, preadministration of poly[i] increases the efficacy of a low dose (1x10(11) gc/kg) but not of a higher dose (3x10(11) gc/kg) scAAV8-LP1-UT1A1. Administration of poly[i] just before the vector significantly increases the correction of serum bilirubin in female rats. In these, the effect of poly[i] is seen by both doses but is more pronounced in the females receiving the low vector, where it also results in a significant increase of bilirubin glucuronides in bile. In conclusion, this study shows that SR-A mediates the endocytosis of AAV8 in vitro and in vivo and that blocking this receptor can improve the efficacy of AAV-mediated liver-directed gene therapy.</p>

    miR-511-3p, embedded in the macrophage mannose receptor gene, contributes to intestinal inflammation

    No full text
    MiR-511-3p is embedded in intron 5 of the CD206/MRC1 gene Mrc1, expressed by macrophage and dendritic cell populations. CD206 and miR-511-3p expression are co-regulated, and their contribution to intestinal inflammation is unclear. We investigated their roles in intestinal inflammation in both mouse and human systems. Colons of CD206-deficient mice displayed normal numbers of monocytes, macrophage, and dendritic cells. In experimental colitis, CD206-deficient mice had attenuated inflammation compared with wild-type (WT) mice. However, neither a CD206 antagonist nor a blocking antibody reproduced this phenotype, suggesting that CD206 was not involved in this response. Macrophages isolated from CD206-deficient mice had reduced levels of miR-511-3p and Tlr4 compared with WT, which was associated with reduced pro-inflammatory cytokine production upon lipopolysaccharides (LPS) and fecal supernatant stimulation. Macrophages overexpressing miR-511-3p showed 50% increase of Tlr4 mRNA, whereas knockdown of miR-511-3p reduced Tlr4 mRNA levels by 60%, compared with scrambled microRNA (miRNA)-transduced cells. Response to anti-tumor necrosis factor (TNF) treatment has been associated with elevated macrophage CD206 expression in the mucosa. However, in colon biopsies no statistically significant change in miR-511-3p was detected. Taken together, our data show that miR-511-3p controls macrophage-mediated microbial responses and is involved in the regulation of intestinal inflammatio

    In vitro models for the prediction of in vivo performance of oral dosage forms: Recent progress from partnership through the IMI OrBiTo collaboration

    No full text
    The availability of in vitro tools that are constructed on the basis of a detailed knowledge of key aspects of gastrointestinal (GI) physiology and their impact on formulation performance and subsequent drug release behaviour is fundamental to the success and efficiency of oral drug product development. Over the last six years, the development and optimization of improved, biorelevant in vitro tools has been a cornerstone of the IMI OrBiTo (Oral Biopharmaceutics Tools) project. By bringing together key industry and academic partners, and by linking tool development and optimization to human studies to understand behaviour at the formulation/GI tract interface, the collaboration has enabled innovation, optimization and implementation of the requisite biorelevant in vitro tools. In this paper, we present an overview of the in vitro tools investigated during the collaboration and offer a perspective on their future use in enhancing the development of new oral drug products. © 2018 Elsevier B.V
    corecore