570 research outputs found

    Beam-beam-induced orbit effects at LHC

    Full text link
    For high bunch intensities the long-range beam-beam interactions are strong enough to provoke effects on the orbit. As a consequence the closed orbit changes. The closed orbit of an unperturbed machine with respect to a machine where the beam-beam force becomes more and more important has been studied and the results are presented in this paper.Comment: 5 pages, contribution to the ICFA Mini-Workshop on Beam-Beam Effects in Hadron Colliders, CERN, Geneva, Switzerland, 18-22 Mar 201

    Epidemiology and antifungal resistance in invasive candidiasis

    Get PDF
    The epidemiology of Candida infections has changed over the last two decades: The number of patients suffering from such infections has increased dramatically and the Candida species involved have become more numerous as Candida albicans is replaced as an infecting agent by various non-C. albicans species (NAC). At the same time, additional antifungal agents have become available. The different Candida species may vary in their susceptibility for these various antifungals. This draws more attention to in vitro susceptibility testing. Unfortunately, several different test methods exist that may deliver different results. Moreover, clinical breakpoints (CBP) that classify test results into susceptible, intermediate and resistant are controver- sial between CLSI and EUCAST. Therefore, clinicians should be aware that interpretations may vary with the test system being followed by the microbiological laboratory. Thus, knowledge of actual MIC values and pharmacokinetic properties of individual antifungal agents is important in delivering appropriate therapy to patient

    Optimization-based calibration of hydrodynamic drag coefficients for a semisubmersible platform using experimental data of an irregular sea state

    Get PDF
    For the simulation of the coupled dynamic response of floating offshore wind turbines, it is crucial to calibrate the hydrodynamic damping with experimental data. The aim of this work is to find a set of hydrodynamic drag coefficients for the semisubmersible platform of the Offshore Code Comparison Collaboration, Continuation, with Correlation and unCertainity (OC6) project which provides suitable results for an irregular sea state. Due to the complex interaction of several degrees of freedom (DOF), it is common to calibrate drag coefficients with the time series of decay tests. However, applying these drag coefficients for the simulation of an irregular sea state results in misprediction of the motions. By using numerical optimization, it is possible to calibrate multiple drag coefficients simultaneously and effectively, while also considering several DOF. This work considers time series of structural displacements from wave tank tests of the OC6 project and from simulations of the same load cases in OpenFAST. Results are transferred into the frequency domain and the deviation between power spectral densities of surge, pitch and heave from experiment and numerical simulation is used as an objective function to obtain the best fitting drag coefficients. This novel numerical optimization approach enables finding one set of drag coefficients for different load cases, which is a major improvement compared to decay-test-tuned drag coefficients. © Published under licence by IOP Publishing Ltd

    Multi-site H-bridge breathers in a DNA--shaped double strand

    Get PDF
    We investigate the formation process of nonlinear vibrational modes representing broad H-bridge multi--site breathers in a DNA--shaped double strand. Within a network model of the double helix we take individual motions of the bases within the base pair plane into account. The resulting H-bridge deformations may be asymmetric with respect to the helix axis. Furthermore the covalent bonds may be deformed distinctly in the two backbone strands. Unlike other authors that add different extra terms we limit the interaction to the hydrogen bonds within each base pair and the covalent bonds along each strand. In this way we intend to make apparent the effect of the characteristic helicoidal structure of DNA. We study the energy exchange processes related with the relaxation dynamics from a non-equilibrium conformation. It is demonstrated that the twist-opening relaxation dynamics of a radially distorted double helix attains an equilibrium regime characterized by a multi-site H-bridge breather.Comment: 27 pages and 10 figure

    Antecedent use of fluoroquinolones is associated with resistance to moxifloxacin in Clostridium difficile

    Get PDF
    ObjectiveMoxifloxacin is characterized by high activity against Gram-positive cocci and some Gram-positive and -negative anaerobes, including Clostridium difficile. This study investigates the role of prior quinolone use in relation to patterns of susceptibility of C. difficile to moxifloxacin.MethodsSixty-three clinical isolates of C. difficile were investigated for toxigenicity, susceptibility to moxifloxacin, and mutations in the DNA gyrase gene. The medical histories for 50 of these patients were available and used to identify previous fluoroquinolone use.ResultsThirty-three (52.4%) strains showed resistance to moxifloxacin (MICs ≥ 16 mg/L). All moxifloxacin-resistant strains harbored a mutation at amino acid codon Ser-83 of gyrA. Forty-five isolates (71.4%) were toxigenic; all moxifloxacin-resistant strains were in this group. Resistance to moxifloxacin was associated with prior use of fluoroquinolones (P-value 0.009, chi-square).ConclusionsAlthough the use of moxifloxacin to treat C. difficile-associated diarrhea is not likely to be common, these data show a relationship between antecedent fluoroquinolone use and resistance to moxifloxacin in C. difficile isolates, and raise questions regarding selection pressure for resistance placed on colonizing bacteria exposed to fluoroquinolones. Mutations in gyrA are involved in moxifloxacin resistance

    Performance and luminosity models for heavy ion operation at the CERN Large Hadron Collider

    Get PDF
    A good understanding of the luminosity performance in a collider, as well as reliable tools to analyse, predict, and optimise the performance, is of great importance for the successful planning and execution of future runs. In this article, we present two different models for the evolution of the beam parameters and the luminosity in heavy ion colliders. The first, Collider Time Evolution is a particle tracking code, while the second, the Multi Bunch Simulation is based on the numerical solution of ordinary differential equations for beam parameters. As a benchmark, we compare simulations and data for a large number of physics fills in the 2018 Pb Pb run at the CERN Large Hadron Collider LHC , finding excellent agreement for most parameters, both between the simulations and with the measured data. Both codes are then used independently to predict the performance in future heavy ion operation, with both Pb Pb and p Pb collisions, at the LHC and its upgrade, the high luminosity LHC. The use of two independent codes based on different principles gives increased confidence in the result

    Fate and effects of silver nanoparticles at the aquatic-terrestrial interface: A floodplain mesocosm experiment

    Get PDF
    The production volume of engineered inorganic nanoparticles (EINP) successively increased over the last years. Once released into the natural environment, these particles may change their size and surface properties in interaction with other substances. This is expected to control their mobility and their impact on biochemical processes. However, the underlying processes are not fully understood yet. Transformation processes and long-term fate of citrate-coated silver nanoparticles (Ag NP) were investigated in an innovative floodplain mesocosm, which was run with river Rhine water and natural soil from an adjacent floodplain for 33 weeks. Flooding events were simulated every three weeks. The Ag NP with a concentration of 5 mg L-1 were continuously introduced into the water for three weeks followed by a three-week period without spiking. Every third week the ecotoxicological impact of Ag NP was determined by means of Gammarus mortality and feeding assays. At the end of the experiment, the total Ag concentrations were measured in profiles of the floodplain soil and the sediment as well as in algae that developed in the mesocosm. The total Ag concentration in the aquatic phase in the main zone as well as in the floodplain fluctuated according to the periodic Ag NP pulse. Further, significant amounts of Ag accumulated in algae (up to 4.7 mg g-1) and exposed leaves (up to 170 μg g-1). However, for the applied experimental conditions we did neither observed mortality nor sublethal effects on Gammarus feeding activity. More than 40 % of the Ag remained in the sediment of the main zone and 7 % were transported during flooding into the floodplain soil. Furthermore, 0.5 % of the Ag was still in the water phase. Most of the particles were immobilized in the top layer of the sediments and soil. Only very little transport in deeper soil layers was observed in the soil columns and sediment. Accumulation in algae, sediment, and soil is alarming for long-term environmental impact assessments and the long lifetime in the aqueous phase suggests long-range transport of Ag NP in rivers

    Unzipping Kinetics of Double-Stranded DNA in a Nanopore

    Get PDF
    We studied the unzipping kinetics of single molecules of double-stranded DNA by pulling one of their two strands through a narrow protein pore. PCR analysis yielded the first direct proof of DNA unzipping in such a system. The time to unzip each molecule was inferred from the ionic current signature of DNA traversal. The distribution of times to unzip under various experimental conditions fit a simple kinetic model. Using this model, we estimated the enthalpy barriers to unzipping and the effective charge of a nucleotide in the pore, which was considerably smaller than previously assumed.Comment: 10 pages, 5 figures, Accepted: Physics Review Letter
    • …
    corecore