380 research outputs found

    The neuronal correlates of mirror illusion in children with spastic hemiparesis: a study with functional magnetic resonance imaging.

    Get PDF
    To investigate the neuronal activation pattern underlying the effects of mirror illusion in children/adolescents with normal motor development and in children/adolescents with hemiparesis and preserved contralateral corticospinal organisation. The type of cortical reorganisation was classified according to results of transcranial magnetic stimulation. Only subjects with congenital lesions and physiological contralateral cortical reorganisation were included. Functional magnetic resonance imaging was performed to investigate neuronal activation patterns with and without a mirror box. Each test consisted of a unimanual and a bimanual motor task. Seven children/adolescents with congenital hemiparesis (10-20 years old, three boys and four girls) and seven healthy subjects (8-17 years old, four boys and three girls) participated in this study. In the bimanual experiment, children with hemiparesis showed a significant effect of the mirror illusion (p<0.001 at voxel level, family-wise error corrected at cluster level) in the dorsolateral prefrontal cortex and anterior cingulate cortex of the affected and unaffected hemispheres, respectively. No significant effects of the mirror illusion were observed in unimanual experiments and in healthy participants. Mirror illusion in children/adolescents with hemiparesis leads to activation of brain areas involved in visual conflict detection and cognitive control to resolve this conflict. This effect is observed only in bimanual training. We consider that for mirror therapy in children and adolescents with hemiparesis a bimanual approach is more suitable than a unimanual approach

    Prediction of maximal oxygen uptake from 6-min walk test in pulmonary hypertension

    Full text link
    Maximal oxygen uptake (V'O2 max), assessed by cardiopulmonary exercise testing (CPET), is an important parameter for risk assessment in patients with pulmonary hypertension (PH). However, CPET may not be available for all PH patients. Thus, we aimed to test previously published predictive models of V'O2 max from the 6-min walk distance (6MWD) for their accuracy and to create a new model. We tested four models (two by Ross et al. (2010), one by Miyamoto et al. (2000) and one by Zapico et al. (2019)). To derive a new model, data were split into a training and testing dataset (70:30) and step-wise linear regression was performed. To compare the different models, the standard error of the estimate (SEE) was calculated and the models graphically compared by Bland-Altman plots. Sensitivity and specificity for correct prediction into low-risk classification (V'O2 max >15 mL/min/kg) was calculated for all models. A total of 276 observations were included in the analysis (194/82 training/testing dataset); 6MWD and V'O2 max were significantly correlated (r=0.65, p<0.001). Linear regression showed significant correlation of 6MWD, weight and heart rate response (HRR) with V'O2 max and the best fitting prediction equation was: V'O2 max = 1.83 + 0.031 × 6MWD (m) - 0.023 × weight (kg) - 0.015 × HRR (bpm). SEEs for the different models were 3.03, 3.22, 4.36 and 3.08 mL/min/kg for the Ross et al., Miyamoto et al., Zapico et al. models and the new model, respectively. Predicted mean V'O2 max was 16.5 mL/min/kg (versus observed 16.1 mL/min/kg). 6MWD and V'O2 max reveal good correlation in all models. However, the accuracy of all models is inadequate for clinical use. Thus, CPET and 6MWD both remain valuable risk assessment tools in the management of PH

    The Impact of Breathing Hypoxic Gas and Oxygen on Pulmonary Hemodynamics in Patients With Pulmonary Hypertension

    Full text link
    BackgroundPure oxygen breathing (hyperoxia) may improve hemodynamics in patients with pulmonary hypertension (PH) and allows to calculate right-to-left shunt fraction (Qs/Qt), whereas breathing normobaric hypoxia may accelerate hypoxic pulmonary vasoconstriction (HPV). This study investigates how hyperoxia and hypoxia affect mean pulmonary artery pressure (mPAP) and pulmonary vascular resistance (PVR) in patients with PH and whether Qs/Qt influences the changes of mPAP and PVR.Study Design and MethodsAdults with pulmonary arterial or chronic thromboembolic PH (PAH/CTEPH) underwent repetitive hemodynamic and blood gas measurements during right heart catheterization (RHC) under normoxia [fractions of inspiratory oxygen (FiO2_{2}) 0.21], hypoxia (FiO2_{2} 0.15), and hyperoxia (FiO2_{2} 1.0) for at least 10 min.ResultsWe included 149 patients (79/70 PAH/CTEPH, 59% women, mean ± SD 60 ± 17 years). Multivariable regressions (mean change, CI) showed that hypoxia did not affect mPAP and cardiac index, but increased PVR [0.4 (0.1–0.7) WU, p = 0.021] due to decreased pulmonary artery wedge pressure [−0.54 (−0.92 to −0.162), p = 0.005]. Hyperoxia significantly decreased mPAP [−4.4 (−5.5 to −3.3) mmHg, p &lt; 0.001] and PVR [−0.4 (−0.7 to −0.1) WU, p = 0.006] compared with normoxia. The Qs/Qt (14 ± 6%) was &gt;10 in 75% of subjects but changes of mPAP and PVR under hyperoxia and hypoxia were independent of Qs/Qt.ConclusionAcute exposure to hypoxia did not relevantly alter pulmonary hemodynamics indicating a blunted HPV-response in PH. In contrast, hyperoxia remarkably reduced mPAP and PVR, indicating a preserved vasodilator response to oxygen and possibly supporting the oxygen therapy in patients with PH. A high proportion of patients with PH showed increased Qs/Qt, which, however, was not associated with changes in pulmonary hemodynamics in response to changes in FiO2_{2}

    Influence of Upright Versus Supine Position on Resting and Exercise Hemodynamics in Patients Assessed for Pulmonary Hypertension

    Full text link
    Background The aim of the present work was to study the influence of body position on resting and exercise pulmonary hemodynamics in patients assessed for pulmonary hypertension (PH). Methods and Results Data from 483 patients with suspected PH undergoing right heart catheterization for clinical indications (62% women, age 61±15 years, 246 precapillary PH, 48 postcapillary PH, 106 exercise PH, 83 no PH) were analyzed; 213 patients (main cohort, years 2016-2018) were examined at rest in upright (45°) and supine position, such as under upright exercise. Upright exercise hemodynamics were compared with 270 patients (historical cohort) undergoing supine exercise with the same protocol. Upright versus supine resting data revealed a lower mean pulmonary artery pressure 31±14 versus 32±13 mm Hg, pulmonary artery wedge pressure 11±4 versus 12±5 mm Hg, and cardiac index 2.9±0.7 versus 3.1±0.8 L/min per m2, and higher pulmonary vascular resistance 4.1±3.1 versus 3.9±2.8 Wood P<0.001. Exercise data upright versus supine revealed higher work rates (53±26 versus 33±22 watt), and adjusting for differences in work rate and baseline values, higher end-exercise mean pulmonary artery pressure (52±19 versus 45±16 mm Hg, P=0.001), similar pulmonary artery wedge pressure and cardiac index, higher pulmonary vascular resistance (5.4±3.7 versus 4.5±3.4 Wood units, P=0.002), and higher mean pulmonary artery pressure/cardiac output (7.9±4.7 versus 7.1±4.1 Wood units, P=0.001). Conclusions Body position significantly affects resting and exercise pulmonary hemodynamics with a higher pulmonary vascular resistance of about 10% in upright versus supine position at rest and end-exercise, and should be considered and reported when assessing PH. Keywords: body position; exercise; hemodynamic; pulmonary hypertension; right heart catheterization

    Echocardiography and extravascular lung water during 3 weeks of exposure to high altitude in otherwise healthy asthmatics

    Get PDF
    Background: Asthma rehabilitation at high altitude is common. Little is known about the acute and subacute cardiopulmonary acclimatization to high altitude in middle-aged asthmatics without other comorbidities.Methods: In this prospective study in lowlander subjects with mostly mild asthma who revealed an asthma control questionnaire score &gt;0.75 and participated in a three-week rehabilitation program, we assessed systolic pulmonary artery pressure (sPAP), cardiac function, and extravascular lung water (EVLW) at 760 m (baseline) by Doppler-echocardiography and on the second (acute) and last day (subacute) at a high altitude clinic in Kyrgyzstan (3100 m).Results: The study included 22 patients (eight male) with a mean age of 44.3 ± 12.4 years, body mass index of 25.8 ± 4.7 kg/m2^{2}, a forced expiratory volume in 1 s of 92% ± 19% predicted (post-bronchodilator), and partially uncontrolled asthma. sPAP increased from 21.8 mmHg by mean difference by 7.5 [95% confidence interval 3.9 to 10.5] mmHg (p &lt; 0.001) during acute exposure and by 4.8 [1.0 to 8.6] mmHg (p = 0.014) during subacute exposure. The right-ventricular-to-pulmonary-artery coupling expressed by TAPSE/sPAP decreased from 1.1 by −0.2 [−0.3 to −0.1] mm/mmHg (p &lt; 0.001) during acute exposure and by −0.2 [−0.3 to −0.1] mm/mmHg (p = 0.002) during subacute exposure, accordingly. EVLW significantly increased from baseline (1.3 ± 1.8) to acute hypoxia (5.5 ± 3.5, p &lt; 0.001) but showed no difference after 3 weeks (2.0 ± 1.8).Conclusion: In otherwise healthy asthmatics, acute exposure to hypoxia at high altitude increases pulmonary artery pressure (PAP) and EVLW. During subacute exposure, PAP remains increased, but EVLW returns to baseline values, suggesting compensatory mechanisms that contribute to EVLW homeostasis during acclimatization

    Pulmonary arterial wedge pressure increase during exercise in patients diagnosed with pulmonary arterial or chronic thromboembolic pulmonary hypertension

    Get PDF
    Background: The course of pulmonary arterial wedge pressure (PAWP) during exercise in patients with pulmonary arterial or chronic thromboembolic pulmonary hypertension (PAH/CTEPH), further abbreviated as pulmonary vascular disease (PVD), is still unknown. The aim of the study was to describe PAWP during exercise in patients with PVD. Methods: In this cross-sectional study, right heart catheter (RHC) data including PAWP, recorded during semi-supine, stepwise cycle exercise in patients with PVD, were analysed retrospectively. We investigated PAWP changes during exercise until end-exercise. Results: In 121 patients (59 female, 66 CTEPH, 55 PAH, 62±17 years) resting PAWP was 10.2±4.1 mmHg. Corresponding peak changes in PAWP during exercise were +2.9 mmHg (95% CI 2.1-3.7 mmHg, p<0.001). Patients ≥50 years had a significantly higher increase in PAWP during exercise compared with those <50 years (p<0.001). The PAWP/cardiac output (CO) slopes were 3.9 WU for all patients, and 1.6 WU for patients <50 years and 4.5 WU for those ≥50 years. Conclusion: In patients with PVD, PAWP increased slightly but significantly with the onset of exercise compared to resting values. The increase in PAWP during exercise was age-dependent, with patients ≥50 years showing a rapid PAWP increase even with minimal exercise. PAWP/CO slopes >2 WU are common in patients with PVD aged ≥50 years without exceeding the PAWP of 25 mmHg during exercise
    corecore