959 research outputs found

    On the link between conscious function and general intelligence in humans and machines

    Get PDF
    In popular media, there is often a connection drawn between the advent of awareness in artificial agents and those same agents simultaneously achieving human or superhuman level intelligence. In this work, we explore the validity and potential application of this seemingly intuitive link between consciousness and intelligence. We do so by examining the cognitive abilities associated with three contemporary theories of conscious function: Global Workspace Theory (GWT), Information Generation Theory (IGT), and Attention Schema Theory (AST). We find that all three theories specifically relate conscious function to some aspect of domain-general intelligence in humans. With this insight, we turn to the field of Artificial Intelligence (AI) and find that, while still far from demonstrating general intelligence, many state-of-the-art deep learning methods have begun to incorporate key aspects of each of the three functional theories. Given this apparent trend, we use the motivating example of mental time travel in humans to propose ways in which insights from each of the three theories may be combined into a unified model. We believe that doing so can enable the development of artificial agents which are not only more generally intelligent but are also consistent with multiple current theories of conscious function

    A renormalization procedure for tensor models and scalar-tensor theories of gravity

    Get PDF
    Tensor models are more-index generalizations of the so-called matrix models, and provide models of quantum gravity with the idea that spaces and general relativity are emergent phenomena. In this paper, a renormalization procedure for the tensor models whose dynamical variable is a totally symmetric real three-tensor is discussed. It is proven that configurations with certain Gaussian forms are the attractors of the three-tensor under the renormalization procedure. Since these Gaussian configurations are parameterized by a scalar and a symmetric two-tensor, it is argued that, in general situations, the infrared dynamics of the tensor models should be described by scalar-tensor theories of gravity.Comment: 20 pages, 3 figures, references added, minor correction

    Physics of the liquid-liquid critical point

    Full text link
    Within the inherent structure (IS) thermodynamic formalism introduced by Stillinger and Weber [F. H. Stillinger and T. A. Weber, Phys. Rev. A {\bf 25}, 978 (1982)] we address the basic question of the physics of the liquid-liquid transition and of density maxima observed in some complex liquids such as water by identifying, for the first time, the statistical properties of the potential energy landscape (PEL) responsible for these anomalies. We also provide evidence of the connection between density anomalies and the liquid-liquid critical point. Within the simple (and physically transparent) model discussed, density anomalies do imply the existence of a liquid-liquid transition.Comment: Physical Review Letters, in publicatio

    Phonon Dynamics and Multipolar Isomorphic Transition in beta-pyrochlore KOs2O6

    Full text link
    We investigate with a microscopic model anharmonic K-cation oscillation observed by neutron experiments in beta-pyrochlore superconductor KOs2O6, which also shows a mysterious first-order structural transition at Tp=7.5 K. We have identified a set of microscopic model parameters that successfully reproduce the observed temperature dependence and the superconducting transition temperature. Considering changes in the parameters at Tp, we can explain puzzling experimental results about electron-phonon coupling and neutron data. Our analysis demonstrates that the first-order transition is multipolar transition driven by the octupolar component of K-cation oscillations. The octupole moment does not change the symmetry and is characteristic to noncentrosymmetric K-cation potential.Comment: 5 pages, 4 figures, submitted to J. Phys. Soc. Jp

    MarvelD3 regulates the c-Jun N-terminal kinase pathway during eye development in Xenopus.

    Get PDF
    Ocular morphogenesis requires several signalling pathways controlling the expression of transcription factors and cell-cycle regulators. However, despite a well-known mechanism, the dialogue between those signals and factors remains to be unveiled. Here, we identify a requirement for MarvelD3, a tight junction transmembrane protein, in eye morphogenesis in Xenopus MarvelD3 depletion led to an abnormally pigmented eye or even an eye-less phenotype, which was rescued by ectopic MarvelD3 expression. Altering MarvelD3 expression led to deregulated expression of cell-cycle regulators and transcription factors required for eye development. The eye phenotype was rescued by increased c-Jun terminal Kinase activation. Thus, MarvelD3 links tight junctions and modulation of the JNK pathway to eye morphogenesis

    Statics, metastable states and barriers in protein folding: A replica variational approach

    Full text link
    Protein folding is analyzed using a replica variational formalism to investigate some free energy landscape characteristics relevant for dynamics. A random contact interaction model that satisfies the minimum frustration principle is used to describe the coil-globule transition (characterized by T_CG), glass transitions (by T_A and T_K) and folding transition (by T_F). Trapping on the free energy landscape is characterized by two characteristic temperatures, one dynamic, T_A the other static, T_K (T_A> T_K), which are similar to those found in mean field theories of the Potts glass. 1)Above T_A, the free energy landscape is monotonous and polymer is melted both dynamically and statically. 2)Between T_A and T_K, the melted phase is still dominant thermodynamically, but frozen metastable states, exponentially large in number, appear. 3)A few lowest minima become thermodynamically dominant below T_K, where the polymer is totally frozen. In the temperature range between T_A and T_K, barriers between metastable states are shown to grow with decreasing temperature suggesting super-Arrhenius behavior in a sufficiently large system. Due to evolutionary constraints on fast folding, the folding temperature T_F is expected to be higher than T_K, but may or may not be higher than T_A. Diverse scenarios of the folding kinetics are discussed based on phase diagrams that take into account the dynamical transition, as well as the static ones.Comment: 41 pages, LaTeX, 9 EPS figure

    Large-N spacetime reduction and the sign and silver-blaze problems of dense QCD

    Full text link
    We study the spacetime-reduced (Eguchi-Kawai) version of large-N QCD with nonzero chemical potential. We explore a method to suppress the sign fluctuations of the Dirac determinant in the hadronic phase; the method employs a re-summation of gauge configurations that are related to each other by center transformations. We numerically test this method in two dimensions, and find that it successfully solves the silver-blaze problem. We analyze the system further, and measure its free energy F, the average phase theta of its Dirac determinant, and its chiral condensate . We show that F and are independent of mu in the hadronic phase but that, as chiral perturbation theory predicts, the quenched chiral condensate drops from its mu=0 value when mu~(pion mass)/2. Finally, we find that the distribution of theta qualitatively agrees with further, more recent, predictions from chiral perturbation theory.Comment: 43 pages, 17 figure
    corecore