1,744 research outputs found

    The shortcomings of semi-local and hybrid functionals: what we can learn from surface science studies

    Full text link
    A study of the adsorption of CO on late 4d and 5d5d transition metal (111) surfaces (Ru, Rh, Pd, Ag, Os, Ir, and Pt) considering atop and hollow site adsorption is presented. The applied functionals include the gradient corrected PBE and BLYP functional, and the corresponding hybrid Hartree-Fock density functionals HSE and B3LYP. We find that PBE based hybrid functionals (specifically HSE) yield, with the exception of Pt, the correct site order on all considered metals, but they also considerably overestimate the adsorption energies compared to experiment. On the other hand, the semi-local BLYP functional and the corresponding hybrid functional B3LYP yield very satisfactory adsorption energies and the correct adsorption site for all surfaces. We are thus faced with a Procrustean problem: the B3LYP and BLYP functionals seem to be the overall best choice for describing adsorption on metal surfaces, but they simultaneously fail to account well for the properties of the metal, vastly overestimating the equilibrium volume and underestimating the atomization energies. Setting out from these observations, general conclusions are drawn on the relative merits and drawbacks of various semi-local and hybrid functionals. The discussion includes a revised version of the PBE functional specifically optimized for bulk properties and surface energies (PBEsol), a revised version of the PBE functional specifically optimized to predict accurate adsorption energies (rPBE), as well as the aforementioned BLYP functional. We conclude that no semi-local functional is capable to describe all aspects properly, and including non-local exchange also only improves some, but worsens other properties.Comment: 12 pages, 6 figures; to be published in New Journal of Physic

    Why is a noble metal catalytically active? The role of the O-Ag interaction in the function of silver as an oxidation catalyst

    Get PDF
    Extensive density-functional theory calculations, and taking into account temperature and pressure, affords a comprehensive picture of the behavior and interaction of oxygen and Ag(111), and provides valuable insight into the function of silver as an oxidation catalyst. The obtained phase-diagram reveals the most stable species present in a given environment and thus identifies (and excludes) possibly active oxygen species. In particular, for the conditions of ethylene epoxidation, a thin oxide-like structure is most stable, suggesting that such atomic O species are actuating the catalysis, in contrast to hitherto proposed molecular-like species.Comment: 4 pages including 3 figures, Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Adsorption energies of NH 3

    Full text link

    Density Functional Study of Ethylene Adsorption on Palladium Clusters

    Full text link
    corecore