13,745 research outputs found
Corner transfer matrices in statistical mechanics
Corner transfer matrices are a useful tool in the statistical mechanics of
simple two-dimensinal models. They can be very effective way of obtaining
series expansions of unsolved models, and of calculating the order parameters
of solved ones. Here we review these features and discuss the reason why the
method fails to give the order parameter of the chiral Potts model.Comment: 18 pages, 4 figures, for Proceedings of Conference on Symmetries and
Integrability of Difference Equations. (SIDE VII), Melbourne, July 200
The order parameter of the chiral Potts model
An outstanding problem in statistical mechanics is the order parameter of the
chiral Potts model. An elegant conjecture for this was made in 1983. It has
since been successfully tested against series expansions, but as far as the
author is aware there is as yet no proof of the conjecture. Here we show that
if one makes a certain analyticity assumption similar to that used to derive
the free energy, then one can indeed verify the conjecture. The method is based
on the ``broken rapidity line'' approach pioneered by Jimbo, Miwa and
Nakayashiki.Comment: 29 pages, 7 figures. Citations made more explicit and some typos
correcte
Free field constructions for the elliptic algebra and Baxter's eight-vertex model
Three examples of free field constructions for the vertex operators of the
elliptic quantum group are obtained. Two of these
(for ) are based on representation theories
of the deformed Virasoro algebra, which correspond to the level 4 and level 2
-algebra of Lepowsky and Wilson. The third one () is
constructed over a tensor product of a bosonic and a fermionic Fock spaces. The
algebraic structure at , however, is not related to the deformed
Virasoro algebra. Using these free field constructions, an integral formula for
the correlation functions of Baxter's eight-vertex model is obtained. This
formula shows different structure compared with the one obtained by Lashkevich
and Pugai.Comment: 23 pages. Based on talks given at "MATHPHYS ODYSSEY 2001-Integrable
Models and Beyond" at Okayama and Kyoto, February 19-23, 2001, et
Analyticity and Integrabiity in the Chiral Potts Model
We study the perturbation theory for the general non-integrable chiral Potts
model depending on two chiral angles and a strength parameter and show how the
analyticity of the ground state energy and correlation functions dramatically
increases when the angles and the strength parameter satisfy the integrability
condition. We further specialize to the superintegrable case and verify that a
sum rule is obeyed.Comment: 31 pages in harvmac including 9 tables, several misprints eliminate
Two-dimensional Rydberg gases and the quantum hard squares model
We study a two-dimensional lattice gas of atoms that are photo-excited to
high-lying Rydberg states in which they interact via the van-der-Waals
interaction. We explore the regime of dominant nearest neighbor interaction
where this system is intimately connected to a quantum version of Baxter's hard
squares model. We show that the strongly correlated ground state of the Rydberg
gas can be analytically described by a projected entangled pair state that
constitutes the ground state of the quantum hard squares model. This
correspondence allows us to identify a first order phase boundary where the
Rydberg gas undergoes a transition from a disordered (liquid) phase to an
ordered (solid) phase
Eigenvectors of Baxter-Bazhanov-Stroganov \tau^{(2)}(t_q) model with fixed-spin boundary conditions
The aim of this contribution is to give the explicit formulas for the
eigenvectors of the transfer-matrix of Baxter-Bazhanov-Stroganov (BBS) model
(N-state spin model) with fixed-spin boundary conditions. These formulas are
obtained by a limiting procedure from the formulas for the eigenvectors of
periodic BBS model. The latter formulas were derived in the framework of the
Sklyanin's method of separation of variables. In the case of fixed-spin
boundaries the corresponding T-Q Baxter equations for the functions of
separated variables are solved explicitly. As a particular case we obtain the
eigenvectors of the Hamiltonian of Ising-like Z_N quantum chain model.Comment: 14 pages, paper submitted to Proceedings of the International
Workshop "Classical and Quantum Integrable Systems" (Dubna, January, 2007
Construction of some missing eigenvectors of the XYZ spin chain at the discrete coupling constants and the exponentially large spectral degeneracy of the transfer matrix
We discuss an algebraic method for constructing eigenvectors of the transfer
matrix of the eight vertex model at the discrete coupling parameters. We
consider the algebraic Bethe ansatz of the elliptic quantum group for the case where the parameter satisfies for arbitrary integers , and . When or
is odd, the eigenvectors thus obtained have not been discussed previously.
Furthermore, we construct a family of degenerate eigenvectors of the XYZ spin
chain, some of which are shown to be related to the loop algebra
symmetry of the XXZ spin chain. We show that the dimension of some degenerate
eigenspace of the XYZ spin chain on sites is given by , if
is an even integer. The construction of eigenvectors of the transfer matrices
of some related IRF models is also discussed.Comment: 19 pages, no figure (revisd version with three appendices
Planar lattice gases with nearest-neighbour exclusion
We discuss the hard-hexagon and hard-square problems, as well as the
corresponding problem on the honeycomb lattice. The case when the activity is
unity is of interest to combinatorialists, being the problem of counting binary
matrices with no two adjacent 1's. For this case we use the powerful corner
transfer matrix method to numerically evaluate the partition function per site,
density and some near-neighbour correlations to high accuracy. In particular
for the square lattice we obtain the partition function per site to 43 decimal
places.Comment: 16 pages, 2 built-in Latex figures, 4 table
Comment on `Series expansions from the corner transfer matrix renormalization group method: the hard-squares model'
Earlier this year Chan extended the low-density series for the hard-squares
partition function to 92 terms. Here we analyse this extended
series focusing on the behaviour at the dominant singularity which lies
on on the negative fugacity axis. We find that the series has a confluent
singularity of order 2 at with exponents and
. We thus confirm that the exponent has the exact
value as observed by Dhar.Comment: 5 pages, 1 figure, IoP macros. Expanded second and final versio
High temperature materials study
High temperature operating electronic devices for vapor deposition reactor syste
- …