13,745 research outputs found

    Corner transfer matrices in statistical mechanics

    Full text link
    Corner transfer matrices are a useful tool in the statistical mechanics of simple two-dimensinal models. They can be very effective way of obtaining series expansions of unsolved models, and of calculating the order parameters of solved ones. Here we review these features and discuss the reason why the method fails to give the order parameter of the chiral Potts model.Comment: 18 pages, 4 figures, for Proceedings of Conference on Symmetries and Integrability of Difference Equations. (SIDE VII), Melbourne, July 200

    The order parameter of the chiral Potts model

    Full text link
    An outstanding problem in statistical mechanics is the order parameter of the chiral Potts model. An elegant conjecture for this was made in 1983. It has since been successfully tested against series expansions, but as far as the author is aware there is as yet no proof of the conjecture. Here we show that if one makes a certain analyticity assumption similar to that used to derive the free energy, then one can indeed verify the conjecture. The method is based on the ``broken rapidity line'' approach pioneered by Jimbo, Miwa and Nakayashiki.Comment: 29 pages, 7 figures. Citations made more explicit and some typos correcte

    Free field constructions for the elliptic algebra Aq,p(sl^2){\cal A}_{q,p}(\hat{sl}_2) and Baxter's eight-vertex model

    Full text link
    Three examples of free field constructions for the vertex operators of the elliptic quantum group Aq,p(sl^2){\cal A}_{q,p}(\hat{sl}_2) are obtained. Two of these (for p1/2=±q3/2,p1/2=−q2p^{1/2}=\pm q^{3/2},p^{1/2}=-q^2) are based on representation theories of the deformed Virasoro algebra, which correspond to the level 4 and level 2 ZZ-algebra of Lepowsky and Wilson. The third one (p1/2=q3p^{1/2}=q^{3}) is constructed over a tensor product of a bosonic and a fermionic Fock spaces. The algebraic structure at p1/2=q3p^{1/2}=q^{3}, however, is not related to the deformed Virasoro algebra. Using these free field constructions, an integral formula for the correlation functions of Baxter's eight-vertex model is obtained. This formula shows different structure compared with the one obtained by Lashkevich and Pugai.Comment: 23 pages. Based on talks given at "MATHPHYS ODYSSEY 2001-Integrable Models and Beyond" at Okayama and Kyoto, February 19-23, 2001, et

    Analyticity and Integrabiity in the Chiral Potts Model

    Full text link
    We study the perturbation theory for the general non-integrable chiral Potts model depending on two chiral angles and a strength parameter and show how the analyticity of the ground state energy and correlation functions dramatically increases when the angles and the strength parameter satisfy the integrability condition. We further specialize to the superintegrable case and verify that a sum rule is obeyed.Comment: 31 pages in harvmac including 9 tables, several misprints eliminate

    Two-dimensional Rydberg gases and the quantum hard squares model

    Full text link
    We study a two-dimensional lattice gas of atoms that are photo-excited to high-lying Rydberg states in which they interact via the van-der-Waals interaction. We explore the regime of dominant nearest neighbor interaction where this system is intimately connected to a quantum version of Baxter's hard squares model. We show that the strongly correlated ground state of the Rydberg gas can be analytically described by a projected entangled pair state that constitutes the ground state of the quantum hard squares model. This correspondence allows us to identify a first order phase boundary where the Rydberg gas undergoes a transition from a disordered (liquid) phase to an ordered (solid) phase

    Eigenvectors of Baxter-Bazhanov-Stroganov \tau^{(2)}(t_q) model with fixed-spin boundary conditions

    Full text link
    The aim of this contribution is to give the explicit formulas for the eigenvectors of the transfer-matrix of Baxter-Bazhanov-Stroganov (BBS) model (N-state spin model) with fixed-spin boundary conditions. These formulas are obtained by a limiting procedure from the formulas for the eigenvectors of periodic BBS model. The latter formulas were derived in the framework of the Sklyanin's method of separation of variables. In the case of fixed-spin boundaries the corresponding T-Q Baxter equations for the functions of separated variables are solved explicitly. As a particular case we obtain the eigenvectors of the Hamiltonian of Ising-like Z_N quantum chain model.Comment: 14 pages, paper submitted to Proceedings of the International Workshop "Classical and Quantum Integrable Systems" (Dubna, January, 2007

    Construction of some missing eigenvectors of the XYZ spin chain at the discrete coupling constants and the exponentially large spectral degeneracy of the transfer matrix

    Full text link
    We discuss an algebraic method for constructing eigenvectors of the transfer matrix of the eight vertex model at the discrete coupling parameters. We consider the algebraic Bethe ansatz of the elliptic quantum group Eτ,η(sl2)E_{\tau, \eta}(sl_2) for the case where the parameter η\eta satisfies 2Nη=m1+m2τ2 N \eta = m_1 + m_2 \tau for arbitrary integers NN, m1m_1 and m2m_2. When m1m_1 or m2m_2 is odd, the eigenvectors thus obtained have not been discussed previously. Furthermore, we construct a family of degenerate eigenvectors of the XYZ spin chain, some of which are shown to be related to the sl2sl_2 loop algebra symmetry of the XXZ spin chain. We show that the dimension of some degenerate eigenspace of the XYZ spin chain on LL sites is given by N2L/NN 2^{L/N}, if L/NL/N is an even integer. The construction of eigenvectors of the transfer matrices of some related IRF models is also discussed.Comment: 19 pages, no figure (revisd version with three appendices

    Planar lattice gases with nearest-neighbour exclusion

    Full text link
    We discuss the hard-hexagon and hard-square problems, as well as the corresponding problem on the honeycomb lattice. The case when the activity is unity is of interest to combinatorialists, being the problem of counting binary matrices with no two adjacent 1's. For this case we use the powerful corner transfer matrix method to numerically evaluate the partition function per site, density and some near-neighbour correlations to high accuracy. In particular for the square lattice we obtain the partition function per site to 43 decimal places.Comment: 16 pages, 2 built-in Latex figures, 4 table

    Comment on `Series expansions from the corner transfer matrix renormalization group method: the hard-squares model'

    Full text link
    Earlier this year Chan extended the low-density series for the hard-squares partition function κ(z)\kappa(z) to 92 terms. Here we analyse this extended series focusing on the behaviour at the dominant singularity zdz_d which lies on on the negative fugacity axis. We find that the series has a confluent singularity of order 2 at zdz_d with exponents θ=0.83333(2)\theta=0.83333(2) and θ′=1.6676(3)\theta'= 1.6676(3). We thus confirm that the exponent θ\theta has the exact value 56\frac56 as observed by Dhar.Comment: 5 pages, 1 figure, IoP macros. Expanded second and final versio

    High temperature materials study

    Get PDF
    High temperature operating electronic devices for vapor deposition reactor syste
    • …
    corecore