32 research outputs found
Microscopic Enhancement of Heavy-Element Production
Realistic fusion barriers are calculated in a macroscopic-microscopic model
for several soft-fusion heavy-ion reactions leading to heavy and superheavy
elements. The results obtained in such a realistic picture are very different
from those obtained in a purely macroscopic model. For reactions on 208:Pb
targets, shell effects in the entrance channel result in fusion-barrier
energies at the touching point that are only a few MeV higher than the ground
state for compound systems near Z = 110. The entrance-channel fragment-shell
effects remain far inside the touching point, almost to configurations only
slightly more elongated than the ground-state configuration, where the fusion
barrier has risen to about 10 MeV above the ground-state energy. Calculated
single-particle level diagrams show that few level crossings occur until the
peak in the fusion barrier very close to the ground-state shape is reached,
which indicates that dissipation is negligible until very late in the fusion
process. Whereas the fission valley in a macroscopic picture is several tens of
MeV lower in energy than is the fusion valley, we find in the
macroscopic-microscopic picture that the fission valley is only about 5 MeV
lower than the fusion valley for soft-fusion reactions leading to compound
systems near Z = 110. These results show that no significant
``extra-extra-push'' energy is needed to bring the system inside the fission
saddle point and that the typical reaction energies for maximum cross section
in heavy-element synthesis correspond to only a few MeV above the maximum in
the fusion barrier.Comment: 7 pages. LaTeX. Submitted to Zeitschrift fur Physik A. 5 figures not
included here. Complete preprint, including device-independent (dvi),
PostScript, and LaTeX versions of the text, plus PostScript files of the
figures, available at http://t2.lanl.gov/publications/publications.html or at
ftp://t2.lanl.gov/pub/publications/mehe
Potential energy surfaces of superheavy nuclei
We investigate the structure of the potential energy surfaces of the
superheavy nuclei 258Fm, 264Hs, (Z=112,N=166), (Z=114,N=184), and (Z=120,N=172)
within the framework of self-consistent nuclear models, i.e. the
Skyrme-Hartree-Fock approach and the relativistic mean-field model. We compare
results obtained with one representative parametrisation of each model which is
successful in describing superheavy nuclei. We find systematic changes as
compared to the potential energy surfaces of heavy nuclei in the uranium
region: there is no sufficiently stable fission isomer any more, the importance
of triaxial configurations to lower the first barrier fades away, and
asymmetric fission paths compete down to rather small deformation. Comparing
the two models, it turns out that the relativistic mean-field model gives
generally smaller fission barriers.Comment: 8 pages RevTeX, 6 figure
Lower Cretaceous Provenance and Sedimentary Deposition in the Eastern Carpathians: Inferences for the Evolution of the Subducted Oceanic Domain and its European Passive Continental Margin
Reconstructing orogenic systems made up dominantly by sediments accreted in trenches is challenging because of the incomplete lithological record of the subducted oceanic domain and its attached passive continental margin thrusted by collisional processes. In this respect, the remarkable similar to 600 km long continuity of sediments exposed in the Eastern Carpathian thin-skinned thrust and fold belt and the availability of quantitative reconstructions for adjacent continental units provide excellent conditions for a paleogeographical study by provenance and sedimentological techniques constraining sediment routing and depositional systems. These sediments were deposited in the Ceahlau-Severin branch of the Alpine Tethys Ocean and over its European passive continental margin. We report sedimentological, paleomagnetic, petrographic, and detrital zircon U-Pb data of Lower Cretaceous sediments from several thin-skinned tectonic units presumably deposited in the Moldavides domain of the Eastern Carpathians. Sedimentological observations in the innermost studied unit demonstrate that deposition took place in a deepwater basin floor sheets to sandy turbidite system. Detrital zircon age data demonstrate sourcing from internal Carpathian basement units. The sediment routing changes in more external units, where black shales basin floor sheets to sandy mud turbidites were sourced from an external, European continental area. Although some degree of mixing between sources located on both margins of the ocean occurred, constraining a relatively narrow width of the deep oceanic basin, these results demonstrate that the internal-most studied unit was deposited near an Early Cretaceous accretionary wedge, located on the opposite internal side relative to the passive continental margin domain of other Moldavides units.6 month embargo; first published: 20 April 2020This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]