1,325 research outputs found

    Semi-Classical Quantization of Circular Strings in De Sitter and Anti De Sitter Spacetimes

    Get PDF
    We compute the {\it exact} equation of state of circular strings in the (2+1) dimensional de Sitter (dS) and anti de Sitter (AdS) spacetimes, and analyze its properties for the different (oscillating, contracting and expanding) strings. The string equation of state has the perfect fluid form P=(γ1)E,P=(\gamma-1)E, with the pressure and energy expressed closely and completely in terms of elliptic functions, the instantaneous coefficient γ\gamma depending on the elliptic modulus. We semi-classically quantize the oscillating circular strings. The string mass is m=C/(πHα),  Cm=\sqrt{C}/(\pi H\alpha'),\;C being the Casimir operator, C=LμνLμν,C=-L_{\mu\nu}L^{\mu\nu}, of the O(3,1)O(3,1)-dS [O(2,2)O(2,2)-AdS] group, and HH is the Hubble constant. We find \alpha'm^2_{\mbox{dS}}\approx 5.9n,\;(n\in N_0), and a {\it finite} number of states N_{\mbox{dS}}\approx 0.17/(H^2\alpha') in de Sitter spacetime; m^2_{\mbox{AdS}}\approx 4H^2n^2 (large nN0n\in N_0) and N_{\mbox{AdS}}=\infty in anti de Sitter spacetime. The level spacing grows with nn in AdS spacetime, while is approximately constant (although larger than in Minkowski spacetime) in dS spacetime. The massive states in dS spacetime decay through tunnel effect and the semi-classical decay probability is computed. The semi-classical quantization of {\it exact} (circular) strings and the canonical quantization of generic string perturbations around the string center of mass strongly agree.Comment: Latex, 26 pages + 2 tables and 5 figures that can be obtained from the authors on request. DEMIRM-Obs de Paris-9404

    Complex Scalar DM in a B-L Model

    Full text link
    In this work, we implement a complex scalar Dark Matter (DM) candidate in a U(1)BLU(1)_{B-L} gauge extension of the Standard Model. The model contains three right handed neutrinos with different quantum numbers and a rich scalar sector, with extra doublets and singlets. In principle, these extra scalars can have VEVs (VΦV_{\Phi} and VϕV_{\phi} for the extra doublets and singlets, respectively) belonging to different energy scales. In the context of ζVΦVϕ1\zeta\equiv\frac{V_{\Phi}}{V_{\phi}}\ll1, which allows to obtain naturally light active neutrino masses and mixing compatible with neutrino experiments, the DM candidate arises by imposing a Z2Z_{2} symmetry on a given complex singlet, ϕ2\phi_{2}, in order to make it stable. After doing a study of the scalar potential and the gauge sector, we obtain all the DM dominant processes concerning the relic abundance and direct detection. Then, for a representative set of parameters, we found that a complex DM with mass around 200200 GeV, for example, is compatible with the current experimental constraints without resorting to resonances. However, additional compatible solutions with heavier masses can be found in vicinities of resonances. Finally, we address the issue of having a light CP-odd scalar in the model showing that it is safe concerning the Higgs and the ZμZ_{\mu} boson invisible decay widths, and also the energy loss in stars astrophysical constraints.Comment: 20 pages, 3 figure

    Axion Like Particles and the Inverse Seesaw Mechanism

    Get PDF
    Light pseudoscalars known as axion like particles (ALPs) may be behind physical phenomena like the Universe transparency to ultra-energetic photons, the soft γ\gamma-ray excess from the Coma cluster, and the 3.5 keV line. We explore the connection of these particles with the inverse seesaw (ISS) mechanism for neutrino mass generation. We propose a very restrictive setting where the scalar field hosting the ALP is also responsible for generating the ISS mass scales through its vacuum expectation value on gravity induced nonrenormalizable operators. A discrete gauge symmetry protects the theory from the appearance of overly strong gravitational effects and discrete anomaly cancellation imposes strong constraints on the order of the group. The anomalous U(1)(1) symmetry leading to the ALP is an extended lepton number and the protective discrete symmetry can be always chosen as a subgroup of a combination of the lepton number and the baryon number.Comment: 29pp. v4: published version with erratum. Conclusions unchange

    Semiclassical (QFT) and Quantum (String) Rotating Black Holes and their Evaporation: New Results

    Full text link
    Combination of both quantum field theory (QFT) and string theory in curved backgrounds in a consistent framework, the string analogue model, allows us to provide a full picture of the Kerr-Newman black hole and its evaporation going beyond the current picture. We compute the quantum emission cross section of strings by a Kerr-Newmann black hole (KNbh). It shows the black hole emission at the Hawking temperature T_{sem} in the early evaporation and the new string emission featuring a Hagedorn transition into a string state of temperature T_ s at the last stages. New bounds on the angular momentum J and charge Q emerge in the quantum string regime. The last state of evaporation of a semiclassical KNbh is a string state of temperature T_s, mass M_s, J = 0 = Q, decaying as a quantum string into all kinds of particles.(There is naturally, no loss of information, (no paradox at all)). We compute the microscopic string entropy S_s(m, j) of mass m and spin mode j. (Besides the usual transition at T_s), we find for high j, (extremal string states) a new phase transition at a temperature T_{sj} higher than T_s. We find a new formula for the Kerr black hole entropy S_{sem}, as a function of the usual Bekenstein-Hawking entropy . For high angular momentum, (extremal J = GM^2/c), a gravitational phase transition operates and the whole entropy S_{sem} is drastically different from the Bekenstein-Hawking entropy. This new extremal black hole transition occurs at a temperature T_{sem J} higher than the Hawking temperature T_{sem}.Comment: New articl

    String dynamics in cosmological and black hole backgrounds: The null string expansion

    Get PDF
    We study the classical dynamics of a bosonic string in the DD--dimensional flat Friedmann--Robertson--Walker and Schwarzschild backgrounds. We make a perturbative development in the string coordinates around a {\it null} string configuration; the background geometry is taken into account exactly. In the cosmological case we uncouple and solve the first order fluctuations; the string time evolution with the conformal gauge world-sheet τ\tau--coordinate is given by X0(σ,τ)=q(σ)τ11+2β+c2B0(σ,τ)+X^0(\sigma, \tau)=q(\sigma)\tau^{1\over1+2\beta}+c^2B^0(\sigma, \tau)+\cdots, B0(σ,τ)=kbk(σ)τkB^0(\sigma,\tau)=\sum_k b_k(\sigma)\tau^k where bk(σ)b_k(\sigma) are given by Eqs.\ (3.15), and β\beta is the exponent of the conformal factor in the Friedmann--Robertson--Walker metric, i.e. RηβR\sim\eta^\beta. The string proper size, at first order in the fluctuations, grows like the conformal factor R(η)R(\eta) and the string energy--momentum tensor corresponds to that of a null fluid. For a string in the black hole background, we study the planar case, but keep the dimensionality of the spacetime DD generic. In the null string expansion, the radial, azimuthal, and time coordinates (r,ϕ,t)(r,\phi,t) are r=nAn1(σ)(τ)2n/(D+1) ,r=\sum_n A^1_{n}(\sigma)(-\tau)^{2n/(D+1)}~, ϕ=nAn3(σ)(τ)(D5+2n)/(D+1) ,\phi=\sum_n A^3_{n}(\sigma)(-\tau)^{(D-5+2n)/(D+1)}~, and t=nAn0(σ)(τ)1+2n(D3)/(D+1) .t=\sum_n A^0_{n} (\sigma)(-\tau)^{1+2n(D-3)/(D+1)}~. The first terms of the series represent a {\it generic} approach to the Schwarzschild singularity at r=0r=0. First and higher order string perturbations contribute with higher powers of τ\tau. The integrated string energy-momentum tensor corresponds to that of a null fluid in D1D-1 dimensions. As the string approaches the r=0r=0 singularity its proper size grows indefinitely like (τ)(D3)/(D+1)\sim(-\tau)^{-(D-3)/(D+1)}. We end the paper giving three particular exact string solutions inside the black hole.Comment: 17 pages, REVTEX, no figure

    String Driven Cosmology and its Predictions

    Full text link
    We present a minimal model for the Universe evolution fully extracted from effective String Theory. This model is by its construction close to the standard cosmological evolution, and it is driven selfconsistently by the evolution of the string equation of state itself. The inflationary String Driven stage is able to reach enough inflation, describing a Big Bang like evolution for the metric. By linking this model to a minimal but well established observational information, (the transition times of the different cosmological epochs), we prove that it gives realistic predictions on early and current energy density and its results are compatible with General Relativity. Interestingly enough, the predicted current energy density is found Omega = 1 and a lower limit Omega \geq 4/9 is also found. The energy density at the exit of the inflationary stage also gives | Omega |_{inf}=1. This result shows an agreement with General Relativity (spatially flat metric gives critical energy density) within an inequivalent Non-Einstenian context (string low energy effective equations). The order of magnitude of the energy density-dilaton coupled term at the beginning of the radiation dominated stage agrees with the GUT scale. The predicted graviton spectrum is computed and analyzed without any free parameters. Peaks and asymptotic behaviours of the spectrum are a direct consequence of the dilaton involved and not only of the scale factor evolution. Drastic changes are found at high frequencies: the dilaton produces an increasing spectrum (in no string cosmologies the spectrum is decreasing). Without solving the known problems about higher order corrections and graceful exit of inflation, we find this model closer to the observational Universe than the current available string cosmology scenarii.Comment: LaTex, 22 pages, Lectures delivered at the Chalonge School, Nato ASI: Phase Transitions in the Early Universe: Theory and Observations. To appear in the Proceedings, Editors H. J. de Vega, I. Khalatnikov, N. Sanchez. (Kluwer Pub

    CLASSICAL SPLITTING OF FUNDAMENTAL STRINGS

    Get PDF
    We find exact solutions of the string equations of motion and constraints describing the {\em classical}\ splitting of a string into two. We show that for the same Cauchy data, the strings that split have {\bf smaller} action than the string without splitting. This phenomenon is already present in flat space-time. The mass, energy and momentum carried out by the strings are computed. We show that the splitting solution describes a natural decay process of one string of mass MM into two strings with a smaller total mass and some kinetic energy. The standard non-splitting solution is contained as a particular case. We also describe the splitting of a closed string in the background of a singular gravitational plane wave, and show how the presence of the strong gravitational field increases (and amplifies by an overall factor) the negative difference between the action of the splitting and non-splitting solutions.Comment: 27 pages, revtex
    corecore