10 research outputs found

    INA complex liaises the F1Fo-ATP synthase membrane motor modules.

    No full text
    The F1F0-ATP synthase translates a proton flux across the inner mitochondrial membrane into a mechanical rotation, driving anhydride bond formation in the catalytic portion. The complex's membrane-embedded motor forms a proteinaceous channel at the interface between Atp9 ring and Atp6. To prevent unrestricted proton flow dissipating the H+-gradient, channel formation is a critical and tightly controlled step during ATP synthase assembly. Here we show that the INA complex (INAC) acts at this decisive step promoting Atp9-ring association with Atp6. INAC binds to newly synthesized mitochondrial-encoded Atp6 and Atp8 in complex with maturation factors. INAC association is retained until the F1-portion is built on Atp6/8 and loss of INAC causes accumulation of the free F1. An independent complex is formed between INAC and the Atp9 ring. We conclude that INAC maintains assembly intermediates of the F1 F0-ATP synthase in a primed state for the terminal assembly step-motor module formation

    A Single Peroxisomal Targeting Signal Mediates Matrix Protein Import in Diatoms

    Get PDF
    Peroxisomes are single membrane bound compartments. They are thought to be present in almost all eukaryotic cells, although the bulk of our knowledge about peroxisomes has been generated from only a handful of model organisms. Peroxisomal matrix proteins are synthesized cytosolically and posttranslationally imported into the peroxisomal matrix. The import is generally thought to be mediated by two different targeting signals. These are respectively recognized by the two import receptor proteins Pex5 and Pex7, which facilitate transport across the peroxisomal membrane. Here, we show the first in vivo localization studies of peroxisomes in a representative organism of the ecologically relevant group of diatoms using fluorescence and transmission electron microscopy. By expression of various homologous and heterologous fusion proteins we demonstrate that targeting of Phaeodactylum tricornutum peroxisomal matrix proteins is mediated only by PTS1 targeting signals, also for proteins that are in other systems imported via a PTS2 mode of action. Additional in silico analyses suggest this surprising finding may also apply to further diatoms. Our data suggest that loss of the PTS2 peroxisomal import signal is not reserved to Caenorhabditis elegans as a single exception, but has also occurred in evolutionary divergent organisms. Obviously, targeting switching from PTS2 to PTS1 across different major eukaryotic groups might have occurred for different reasons. Thus, our findings question the widespread assumption that import of peroxisomal matrix proteins is generally mediated by two different targeting signals. Our results implicate that there apparently must have been an event causing the loss of one targeting signal even in the group of diatoms. Different possibilities are discussed that indicate multiple reasons for the detected targeting switching from PTS2 to PTS1

    Role of peroxisomes in the biosynthesis and secretion of β-lactams and other secondary metabolites

    No full text
    corecore