3,502 research outputs found
Evidence for a Z < 8 Origin of the Source Subtracted Near Infrared Background
This letter extends our previous fluctuation analysis of the near infrared
background at 1.6 microns to the 1.1 micron (F110W) image of the Hubble Ultra
Deep field. When all detectable sources are removed the ratio of fluctuation
power in the two images is consistent with the ratio expected for faint, z<8,
sources, and is inconsistent with the expected ratio for galaxies with z>8. We
also use numerically redshifted model galaxy spectral energy distributions for
50 and 10 million year old galaxies to predict the expected fluctuation power
at 3.6 microns and 4.5 microns to compare with recent Spitzer observations. The
predicted fluctuation power for galaxies at z = 0-12 matches the observed
Spitzer fluctuation power while the predicted power for z>13 galaxies is much
higher than the observed values. As was found in the 1.6 micron (F160W)
analysis the fluctuation power in the source subtracted F110W image is two
orders of magnitude below the power in the image with all sources present. This
leads to the conclusion that the 0.8--1.8 micron near infrared background is
due to resolved galaxies in the redshift range z<8, with the majority of power
in the redshift range of 0.5--1.5.Comment: Accepted for publication in the Astrophysical Journa
Corrosion Behavior of Parylene-Metal-Parylene Thin Films in Saline
In this paper, we study the corrosion behavior of parylene-metal-parylene thin films using accelerated-lifetime soak tests. The samples under test are thin film resistors with a 200 nm layer of Au sandwiched by parylene-C on both sides, fabricated with parylene-metal skin technology. The samples are tested in hot saline both passively and actively, and different failure modes are observed using optical and electron-beam metrologies. Bubbles and delamination are first seen in the samples after 2 days of soaking under passive conditions, and followed by metal corrosion. While under active conditions, either bubbles or parylene breakdowns are observed depending on the thickness of parylene packaging. These results contribute to a better understanding of the failure mechanisms of parylene packaging in body fluids
POES satellite observations of EMIC-wave driven relativistic electron precipitation during 1998-2010
[1] Using six Polar Orbiting Environmental Satellites (POES) satellites that have carried the Space Environment Module-2 instrument package, a total of 436,422 individual half-orbits between 1998 and 2010 were inspected by an automatic detection algorithm searching for electromagnetic ion cyclotron (EMIC) driven relativistic electron precipitation (REP). The algorithm searched for one of the key characteristics of EMIC-driven REP, identified as the simultaneity between spikes in the P1 (52 keV differential proton flux channel) and P6 (>800 keV electron channel). In all, 2331 proton precipitation associated REP (PPAREP) events were identified. The majority of events were observed at L-values within the outer radiation belt (3 < L < 7) and were more common in the dusk and night sectors as determined by magnetic local time. The majority of events occurred outside the plasmasphere, at L-values ~1 Re greater than the plasmapause location determined from two different statistical models. The events make up a subset of EMIC-driven proton spikes investigated by Sandanger et al. (2009), and potentially reflect different overall characteristics compared with proton spikes, particularly when comparing their location to that of the plasmapause, i.e., EMIC-driven proton precipitation inside the plasmapause, and potentially EMIC-driven REP outside the plasmapause. There was no clear relationship between the location of plasmaspheric plumes and the locations of the PPAREP events detected. Analysis of the PPAREP event occurrence indicates that high solar wind speed and high geomagnetic activity levels increase the likelihood of an event being detected. The peak PPAREP event occurrence was during the declining phase of solar cycle 23, consistent with the 2003 maximum in the geomagnetic activity index, Ap
Long-term climate change in the D-region
Controversy exists over the potential effects of long-term increases in greenhouse gas concentrations on the ionospheric D-region at 60-90 km altitudes. Techniques involving in-situ rocket measurements, remote optical observations, and radio wave reflection experiments have produced conflicting results. This study reports a novel technique that analyses long-distance subionospheric very low frequency radiowave observations of the NAA 24.0 kHz transmitter, Cutler, Maine, made from Halley Station, Antarctica, over the period 1971-2016. The analysis is insensitive to any changes in the output power of the transmitter, compensates for the use of different data logging equipment, and can confirm the accuracy of the timing systems operated over the 45 year long record. A ~10% reduction in the scale size of the transmitter nighttime interference fringe pattern has been determined, taking into account the quasi-11 year solar cycle. Subionospheric radiowave propagation modeling suggests that the contraction of the interference fringe pattern about the mid-latitude NAA transmitter is due to a 3 km reduction in the effective height of the nighttime ionospheric D-region over the last 45 years. This is consistent with the effect of enhanced infra-red cooling by increasing greenhouse gases
Diatom Proteomics Reveals Unique Acclimation Strategies to Mitigate Fe Limitation
Phytoplankton growth rates are limited by the supply of iron (Fe) in approximately one third of the open ocean, with major implications for carbon dioxide sequestration and carbon (C) biogeochemistry. To date, understanding how alteration of Fe supply changes phytoplankton physiology has focused on traditional metrics such as growth rate, elemental composition, and biophysical measurements such as photosynthetic competence (Fv/Fm). Researchers have subsequently employed transcriptomics to probe relationships between changes in Fe supply and phytoplankton physiology. Recently, studies have investigated longer-term (i.e. following acclimation) responses of phytoplankton to various Fe conditions. In the present study, the coastal diatom, Thalassiosira pseudonana, was acclimated (10 generations) to either low or high Fe conditions, i.e. Fe-limiting and Fe-replete. Quantitative proteomics and a newly developed proteomic profiling technique that identifies low abundance proteins were employed to examine the full complement of expressed proteins and consequently the metabolic pathways utilized by the diatom under the two Fe conditions. A total of 1850 proteins were confidently identified, nearly tripling previous identifications made from differential expression in diatoms. Given sufficient time to acclimate to Fe limitation, T. pseudonana up-regulates proteins involved in pathways associated with intracellular protein recycling, thereby decreasing dependence on extracellular nitrogen (N), C and Fe. The relative increase in the abundance of photorespiration and pentose phosphate pathway proteins reveal novel metabolic shifts, which create substrates that could support other well-established physiological responses, such as heavily silicified frustules observed for Fe-limited diatoms. Here, we discovered that proteins and hence pathways observed to be down-regulated in short-term Fe starvation studies are constitutively expressed when T. pseudonana is acclimated (i.e., nitrate and nitrite transporters, Photosystem II and Photosystem I complexes). Acclimation of the diatom to the desired Fe conditions and the comprehensive proteomic approach provides a more robust interpretation of this dynamic proteome than previous studies.This work was supported by National Science Foundation grants OCE1233014 (BLN) and the Office of Polar Programs Postdoctoral Fellowship grant 0444148 (BLN). DRG was supported by National Institutes of Health 5P30ES007033-10. AH and MTM were supported by Natural Sciences and Engineering Research Council of Canada. RFS and PWB were supported by the New Zealand Royal Society Marsden Fund and the Ministry of Science. This work is supported in part by the University of Washington's Proteomics Computer Resource Centre (UWPR95794). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Psychologists’ Attitudes and Ethical Concerns Regarding the Use of Social Networking Web Sites
Most psychologists seek to control self-disclosures they make to patients, but the Internet’s rapid development and widespread use over the past decade have introduced new problems for psychologists trying to avoid inappropriate disclosures. A total of 695 psychology graduate students and psychologists were surveyed about their current use of social networking Web sites (SNWs), opinions regarding regulation of online activities by the American Psychological Association (APA), and interactions in clinical work as a result of online activities. Established psychologists seldom use SNWs and may lack the experience to provide relevant supervisory guidance. No consensus about the need for APA guidelines emerged. Historically, APA has not issued guidelines in technological areas of rapid change. Thus, graduate training and continuing education should address the ethics of SNWs
Resolving Anger toward God: Lament as an Avenue toward Attachment
Psychologists have mostly overlooked the topic of anger toward God. The current study tested an intervention based on the biblical psalms of lament, a consisting of 20 devotional readings and weekly experiential assignments, delivered electronically over a four-week period. A total of 192 college students at Christian institutions across the United States completed the study, and were randomly assigned to the experimental condition, an attention control condition, or a no-contact condition. The expected findings--that the experimental intervention would cause decreased feelings of anger and complaint toward God, as well as increased intimacy with God over time--were not confirmed. However, those participants who reported maximum compliance with the intervention showed increased ratings on Communion with God. Implications are discussed
Effect of Religiosity and Combat Exposure on Combat Veteran Posttraumatic Growth
Investigates two research questions
Recommended from our members
Self-assembly of Fmoc-tetrapeptides based on the RGDS cell adhesion motif
Self-assembly in aqueous solution has been investigated for two Fmoc [Fmoc ¼ N-(fluorenyl)-9-methoxycarbonyl] tetrapeptides comprising the RGDS cell adhesion motif from fibronectin or the scrambled sequence GRDS. The hydrophobic Fmoc unit confers amphiphilicity on the molecules, and
introduces aromatic stacking interactions. Circular dichroism and FTIR spectroscopy show that the self-assembly of both peptides at low concentration is dominated by interactions among Fmoc units, although Fmoc-GRDS shows b-sheet features, at lower concentration than Fmoc-RGDS. Fibre X-ray diffraction indicates b-sheet formation by both peptides at sufficiently high concentration. Strong
alignment effects are revealed by linear dichroism experiments for Fmoc-GRDS. Cryo-TEM and smallangle
X-ray scattering (SAXS) reveal that both samples form fibrils with a diameter of approximately 10 nm. Both Fmoc-tetrapeptides form self-supporting hydrogels at sufficiently high concentration. Dynamic shear rheometry enabled measurements of the moduli for the Fmoc-GRDS hydrogel, however syneresis was observed for the Fmoc-RGDS hydrogel which was significantly less stable to shear. Molecular dynamics computer simulations were carried out considering parallel and antiparallel b-sheet configurations of systems containing 7 and 21 molecules of Fmoc-RGDS or Fmoc-GRDS, the results being analyzed in terms of both intermolecular structural parameters and energy contributions
- …
