10,164 research outputs found

    Non-Associativity in the Clifford Bundle on the Parallelizable Torsion 7-Sphere

    Full text link
    In this paper we discuss generalized properties of non-associativity in Clifford bundles on the 7-sphere S7. Novel and prominent properties inherited from the non-associative structure of the Clifford bundle on S7 are demonstrated. They naturally lead to general transformations of the spinor fields on S7 and have dramatic consequences for the associated Kac-Moody current algebras. All additional properties concerning the non-associative structure in the Clifford bundle on S7 are considered. We further discuss and explore their applications.Comment: 16 page

    On Clifford Subalgebras, Spacetime Splittings and Applications

    Full text link
    Z2-gradings of Clifford algebras are reviewed and we shall be concerned with an alpha-grading based on the structure of inner automorphisms, which is closely related to the spacetime splitting, if we consider the standard conjugation map automorphism by an arbitrary, but fixed, splitting vector. After briefly sketching the orthogonal and parallel components of products of differential forms, where we introduce the parallel [orthogonal] part as the space [time] component, we provide a detailed exposition of the Dirac operator splitting and we show how the differential operator parallel and orthogonal components are related to the Lie derivative along the splitting vector and the angular momentum splitting bivector. We also introduce multivectorial-induced alpha-gradings and present the Dirac equation in terms of the spacetime splitting, where the Dirac spinor field is shown to be a direct sum of two quaternions. We point out some possible physical applications of the formalism developed.Comment: 22 pages, accepted for publication in International Journal of Geometric Methods in Modern Physics 3 (8) (2006

    Information-entropic analysis of Korteweg--de Vries solitons in the quark-gluon plasma

    Full text link
    Solitary waves propagation of baryonic density perturbations, ruled by the Korteweg--de Vries equation in a mean-field quark-gluon plasma model, are investigated from the point of view of the theory of information. A recently proposed continuous logarithmic measure of information, called configurational entropy, is used to derive the soliton width, defining the pulse, for which the informational content of the soliton spatial profile is more compressed, in the Shannon's sense.Comment: 6 pages, 1 figur

    Black string corrections in variable tension braneworld scenarios

    Full text link
    Braneworld models with variable tension are investigated, and the corrections on the black string horizon along the extra dimension are provided. Such corrections are encrypted in additional terms involving the covariant derivatives of the variable tension on the brane, providing profound consequences concerning the black string horizon variation along the extra dimension, near the brane. The black string horizon behavior is shown to be drastically modified by the terms corrected by the brane variable tension. In particular, a model motivated by the phenomenological interesting case regarding Eotvos branes is investigated. It forthwith provides further physical features regarding variable tension braneworld scenarios, heretofore concealed in all previous analysis in the literature. All precedent analysis considered uniquely the expansion of the metric up to the second order along the extra dimension, what is able to evince solely the brane variable tension absolute value. Notwithstanding, the expansion terms aftermath, further accomplished in this paper from the third order on, elicits the successive covariant derivatives of the brane variable tension, and their respective coupling with the extrinsic curvature, the Weyl tensor, and the Riemann and Ricci tensors, as well as the scalar curvature. Such additional terms are shown to provide sudden modifications in the black string horizon in a variable tension braneworld scenarioComment: 12 pages, 5 figures, accepted in PR

    Dark Spinors Hawking Radiation in String Theory Black Holes

    Get PDF
    The Hawking radiation spectrum of Kerr-Sen axion-dilaton black holes is derived, in the context of dark spinors tunnelling across the horizon. Since a black hole has a well defined temperature, it should radiate in principle all the standard model particles, similar to a black body at that temperature. We investigate the tunnelling of mass dimension one spin-1/2 dark fermions, that are beyond the standard model and are prime candidates to the dark matter. Their interactions with the standard model matter and gauge fields are suppressed by at least one power of unification scale, being restricted just to the Higgs field and to the graviton likewise. The tunnelling method for the emission and absorption of mass dimension one particles across the event horizon of Kerr-Sen axion-dilaton black holes is shown here to provide further evidence for the universality of black hole radiation, further encompassing particles beyond the standard model.Comment: 11 pages, improved version, to appear in AHE

    Holographic entanglement entropy under the minimal geometric deformation and extensions

    Full text link
    The holographic entanglement entropy (HEE) of the minimal geometrical deformation (MGD) procedure and extensions (EMGD), is scrutinized within the membrane paradigm of AdS/CFT. The HEE corrections of the Schwarzschild and Reissner--Nordstr\"om solutions, due to a finite fluid brane tension, are then derived and discussed in the context of the MGD and the EMGD.Comment: 31 pages and 23 figure
    • …
    corecore