432 research outputs found
Quasi-Chemical Theory and Implicit Solvent Models for Simulations
A statistical thermodynamic development is given of a new implicit solvent
model that avoids the traditional system size limitations of computer
simulation of macromolecular solutions with periodic boundary conditions. This
implicit solvent model is based upon the quasi-chemical approach, distinct from
the common integral equation trunk of the theory of liquid solutions. The
physical content of this theory is the hypothesis that a small set of solvent
molecules are decisive for these solvation problems. A detailed derivation of
the quasi-chemical theory escorts the development of this proposal. The
numerical application of the quasi-chemical treatment to Li ion hydration
in liquid water is used to motivate and exemplify the quasi-chemical theory.
Those results underscore the fact that the quasi-chemical approach refines the
path for utilization of ion-water cluster results for the statistical
thermodynamics of solutions.Comment: 30 pages, contribution to Santa Fe Workshop on Treatment of
Electrostatic Interactions in Computer Simulation of Condensed Medi
Cavity-Enhanced Rayleigh Scattering
We demonstrate Purcell-like enhancement of Rayleigh scattering into a single
optical mode of a Fabry-Perot resonator for several thermal atomic and
molecular gases. The light is detuned by more than an octave, in this case by
hundreds of nanometers, from any optical transition, making particle excitation
and spontaneous emission negligible. The enhancement of light scattering into
the resonator is explained quantitatively as an interference effect of light
waves emitted by a classical driven dipole oscillator. Applications of our
method include the sensitive, non-destructive in-situ detection of ultracold
molecules.Comment: v2: 13 pages, 7 figures, small changes to the text, extended
description of the theoretical mode
- …